Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-18T18:42:05.178Z Has data issue: false hasContentIssue false

Cyanine dyes in biophysical research: the photophysics of polymethine fluorescent dyes in biomolecular environments

Published online by Cambridge University Press:  26 November 2010

Marcia Levitus*
Affiliation:
Center for Single Molecule Biophysics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona, USA Department of Physics, Arizona State University, Tempe, Arizona, USA
Suman Ranjit
Affiliation:
Center for Single Molecule Biophysics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona, USA
*
*Author for correspondence: M. Levitus, PO Box 875601, Tempe, AZ 85287-5601, USA. Tel.: (480) 727-8586; Fax: (480) 727-2378; Email: marcia.levitus@asu.edu

Abstract

The breakthroughs in single molecule spectroscopy of the last decade and the recent advances in super resolution microscopy have boosted the popularity of cyanine dyes in biophysical research. These applications have motivated the investigation of the reactions and relaxation processes that cyanines undergo in their electronically excited states. Studies show that the triplet state is a key intermediate in the photochemical reactions that limit the photostability of cyanine dyes. The removal of oxygen greatly reduces photobleaching, but induces rapid intensity fluctuations (blinking). The existence of non-fluorescent states lasting from milliseconds to seconds was early identified as a limitation in single-molecule spectroscopy and a potential source of artifacts. Recent studies demonstrate that a combination of oxidizing and reducing agents is the most efficient way of guaranteeing that the ground state is recovered rapidly and efficiently. Thiol-containing reducing agents have been identified as the source of long-lived dark states in some cyanines that can be photochemically switched back to the emissive state. The mechanism of this process is the reversible addition of the thiol-containing compound to a double bond in the polymethine chain resulting in a non-fluorescent molecule. This process can be reverted by irradiation at shorter wavelengths. Another mechanism that leads to non-fluorescent states in cyanine dyes is cis–trans isomerization from the singlet-excited state. This process, which competes with fluorescence, involves the rotation of one-half of the molecule with respect to the other with an efficiency that depends strongly on steric effects. The efficiency of fluorescence of most cyanine dyes has been shown to depend dramatically on their molecular environment within the biomolecule. For example, the fluorescence quantum yield of Cy3 linked covalently to DNA depends on the type of linkage used for attachment, DNA sequence and secondary structure. Cyanines linked to the DNA termini have been shown to be mostly stacked at the end of the helix, while cyanines linked to the DNA internally are believed to partially bind to the minor or major grooves. These interactions not only affect the photophysical properties of the probes but also create a large uncertainty in their orientation.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

8. References

Aitken, C. E., Marshall, R. A. & Pulglisi, J. D. (2008). An oxygen scavenging system for improvement of dye stability in single-molecule fluorescence experiments. Biophysical Journal 94, 18261835.CrossRefGoogle ScholarPubMed
Åkesson, E., Hakkarainen, A., Laitinen, E., Helenius, V., Gillbro, T., Korppitommola, J. & Sundstrom, V. (1991). Analysis of microviscosity and reaction coordinate concepts in isomerization dynamics described by Kramers’ theory. Journal of Chemical Physics 95, 65086523.CrossRefGoogle Scholar
Åkesson, E., Sundstrom, V. & Gillbro, T. (1985). Solvent-dependent barrier heights of excited-state photoisomerization reactions. Chemical Physics Letters 121, 513522.CrossRefGoogle Scholar
Aramendia, P. F., Negri, R. M. & Sanroman, E. (1994). Temperature-dependence of fluorescence and photoisomerization in symmetrical carbocyanines – influence of medium viscosity and molecular-structure. Journal of Physical Chemistry 98, 31653173.CrossRefGoogle Scholar
Armitage, B. A. (2005). Cyanine dye–DNA interactions: intercalation, groove binding, and aggregation. DNA Binders and Related Subjects 253, 5576.CrossRefGoogle Scholar
Bastiaens, P. I. H. & Jovin, T. M. (1996). Microspectroscopic imaging tracks the intracellular processing of a signal transduction protein: Fluorescent-labeled protein kinase c beta i. Proceedings of the National Academy of Sciences of the United States of America 93, 84078412.CrossRefGoogle ScholarPubMed
Bates, M., Blosser, T. R. & Zhuang, X. W. (2005). Short-range spectroscopic ruler based on a single-molecule optical switch. Physical Review Letters 94, 108101.CrossRefGoogle ScholarPubMed
Bates, M., Huang, B., Dempsey, G. T. & Zhuang, X. W. (2007). Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science 317, 17491753.CrossRefGoogle ScholarPubMed
Benesch, R. E. & Benesch, R. (1953). Enzymatic removal of oxygen for polarography and related methods. Science 118, 447448.CrossRefGoogle ScholarPubMed
Blanchard, S. C., Gonzalez, R. L., Kim, H. D., Chu, S. & Puglisi, J. D. (2004). tRNA selection and kinetic proofreading in translation. Nature Structural & Molecular Biology 11, 10081014.CrossRefGoogle ScholarPubMed
Brinkley, M. (1992). A brief survey of methods for preparing protein conjugates with dyes, haptens, and cross-linking reagents. Bioconjugate Chemistry 3, 213.CrossRefGoogle ScholarPubMed
Brismar, H., Trepte, O. & Ulfhake, B. (1995). Spectra and fluorescence lifetimes of lissamine rhodamine, tetramethylrhodamine isothiocyanate, texas red, and cyanine-3.18 fluorophores – influences of some environmental-factors recorded with a confocal laser-scanning microscope. Journal of Histochemistry and Cytochemistry 43, 699707.CrossRefGoogle ScholarPubMed
Buschmann, V., Weston, K. D. & Sauer, M. (2003). Spectroscopic study and evaluation of red-absorbing fluorescent dyes. Bioconjugate Chemistry 14, 195204.CrossRefGoogle ScholarPubMed
Byers, G. W., Gross, S. & Henrichs, P. M. (1976). Direct and sensitized photooxidation of cyanine dyes. Photochemistry and Photobiology 23, 3743.CrossRefGoogle ScholarPubMed
Chen, H., Ahsan, S. S., Santiago-Berrios, M. E. B., Abruña, H. D. & Webb, W. W. (2010). Mechanisms of quenching of alexa fluorophores by natural amino acids. Journal of the American Chemical Society 132, 72447245.CrossRefGoogle ScholarPubMed
Chen, P., Sun, S. Q., Hu, Y. F., Qian, Z. G. & Zheng, D. S. (1999). Structure and solvent effect on the photostability of indolenine cyanine dyes. Dyes and Pigments 41, 227231.CrossRefGoogle Scholar
Chibisov, A. K. (1977). Triplet-states of cyanine dyes and reactions of electron-transfer with their participation. Journal of Photochemistry 6, 199214.CrossRefGoogle Scholar
Chibisov, A. K., Shvedov, S. V. & Gorner, H. (2001). Photosensitized processes in dicarbocyanine dyes induced by energy transfer: Delayed fluorescence, trans->cis isomerization and electron transfer. Journal of Photochemistry and Photobiology A–Chemistry 141, 3945.CrossRefGoogle Scholar
Chibisov, A. K., Zakharova, G. V. & Gorner, H. (1996). Effects of substituents in the polymethine chain on the photoprocesses in indodicarbocyanine dyes. Journal of the Chemical Society–Faraday Transactions 92, 49174925.CrossRefGoogle Scholar
Chibisov, A. K., Zakharova, G. V. & Gorner, H. (1999). Photoprocesses in dimers of thiacarbocyanines. Physical Chemistry Chemical Physics 1, 14551460.CrossRefGoogle Scholar
Chibisov, A. K., Zakharova, G. V., Gorner, H., Sogulyaev, Y. A., Mushkalo, I. L. & Tolmachev, A. I. (1995). Photorelaxation processes in covalently-linked indocarbocyanine and thiacarbocyanine dyes. Journal of Physical Chemistry 99, 886893.CrossRefGoogle Scholar
Conley, N. R., Biteen, J. S. & Moerner, W. E. (2008). Cy3-Cy5 covalent heterodimers for single-molecule photoswitching. Journal of Physical Chemistry B 112, 1187811880.CrossRefGoogle ScholarPubMed
Cooper, M., Ebner, A., Briggs, M., Burrows, M., Gardner, N., Richardson, R. & West, R. (2004). Cy3B™: improving the performance of cyanine dyes. Journal of Fluorescence 14, 145150.CrossRefGoogle ScholarPubMed
Cordes, T., Vogelsang, J. & Tinnefeld, P. (2009). On the mechanism of trolox as antiblinking and antibleaching reagent. Journal of the American Chemical Society 131, 50185019.CrossRefGoogle ScholarPubMed
Cordes, T., Vogelsang, J., Anaya, M., Spagnuolo, C., Gietl, A., Summerer, W., Herrmann, A., Mullen, K. & Tinnefeld, P. (2010). Single-molecule redox blinking of perylene diimide derivatives in water. Journal of the American Chemical Society 132, 24042409.CrossRefGoogle ScholarPubMed
Crawford, D. J., Hoskins, A. A., Friedman, L. J., Gelles, J. & Moore, M. J. (2008). Visualizing the splicing of single pre-mRNA molecules in whole cell extract. RNA 14, 170179.CrossRefGoogle ScholarPubMed
Dale, R. E., Eisinger, J. & Blumberg, W. E. (1979). Orientational freedom of molecular probes – orientation factor in intra-molecular energy-transfer. Biophysical Journal 26, 161193.CrossRefGoogle Scholar
Dave, R., Terry, D. S., Munro, J. B. & Blanchard, S. C. (2009). Mitigating unwanted photophysical processes for improved single-molecule fluorescence imaging. Biophysical Journal 96, 23712381.CrossRefGoogle ScholarPubMed
Dempsey, G. T., Bates, M., Kowtoniuk, W. E., Liu, D. R., Tsien, R. Y. & Zhuang, X. W. (2009). Photoswitching mechanism of cyanine dyes. Journal of the American Chemical Society 131, 18192.CrossRefGoogle ScholarPubMed
Dempster, D. N., Thompson, G. F., Morrow, T. & Rankin, R. (1972). Photochemical characteristics of cyanine dyes .1. 3,3′-diethyloxadicarbocyanine iodide. Journal of the Chemical Society-Faraday Transactions II 68, 1479.CrossRefGoogle Scholar
Diez, M., Zimmermann, B., Borsch, M., Konig, M., Schweinberger, E., Steigmiller, S., Reuter, R., Felekyan, S., Kudryavtsev, V., Seidel, C. A. M. & Graber, P. (2004). Proton-powered subunit rotation in single membrane-bound F0F1-ATP synthase. Nature Structural and Molecular Biology 11, 135141.CrossRefGoogle ScholarPubMed
Dipaolo, R. E., Scaffardi, L. B., Duchowicz, R. & Bilmes, G. M. (1995). Photoisomerization dynamics and spectroscopy of the polymethine dye dtci. Journal of Physical Chemistry 99, 1379613799.CrossRefGoogle Scholar
Dolghih, E., Roitberg, A. E. & Krause, J. L. (2007). Fluorescence resonance energy transfer in dye-labeled DNA. Journal of Photochemistry and Photobiology A–Chemistry 190, 321327.CrossRefGoogle Scholar
Du, H., Fuh, R. C. A., Li, J. Z., Corkan, L. A. & Lindsey, J. S. (1998). Photochemcad: a computer-aided design and research tool in photochemistry. Photochemistry and Photobiology 68, 141142.Google Scholar
Duchowicz, R., Scaffardi, L. & Tocho, J. O. (1990). Relaxation processes of singlet excited-state of 3,3′-diethyloxadicarbocyanine iodide (DODCI) photoisomer. Chemical Physics Letters 170, 497501.CrossRefGoogle Scholar
Ehret, A., Stuhl, L. & Spitler, M. T. (2001). Spectral sensitization of TiO2 nanocrystalline electrodes with aggregated cyanine dyes. Journal of Physical Chemistry B 105, 99609965.CrossRefGoogle Scholar
Englander, S. W., Calhoun, D. B. & Englander, J. J. (1987). Biochemistry without oxygen. Analytical Biochemistry 161, 300306.CrossRefGoogle ScholarPubMed
English, D. S., Furube, A. & Barbara, P. F. (2000). Single-molecule spectroscopy in oxygen-depleted polymer films. Chemical Physics Letters 324, 1519.CrossRefGoogle Scholar
Ernst, L. A., Gupta, R. K., Mujumdar, R. B. & Waggoner, A. S. (1989). Cyanine dye labeling reagents for sulfhydryl-groups. Cytometry 10, 310.CrossRefGoogle ScholarPubMed
Fegan, A., Shirude, P. S. & Balasubramanian, S. (2008). Rigid cyanine dye nucleic acid labels. Chemical Communications, 20042006.CrossRefGoogle ScholarPubMed
Greenberg, M. L. & Axelrod, D. (1993). Anomalously slow mobility of fluorescent lipid probes in the plasma-membrane of the yeast saccharomyces-cerevisiae. Journal of Membrane Biology 131, 115127.CrossRefGoogle ScholarPubMed
Gruber, H. J., Hahn, C. D., Kada, G., Riener, C. K., Harms, G. S., Ahrer, W., Dax, T. G. & Knaus, H. G. (2000). Anomalous fluorescence enhancement of Cy3 and Cy3.5 versus anomalous fluorescence loss of Cy5 and Cy7 upon covalent linking to IgG and noncovalent binding to avidin. Bioconjugate Chemistry 11, 696704.CrossRefGoogle ScholarPubMed
Grunwell, J. R., Glass, J. L., Lacoste, T. D., Deniz, A. A., Chemla, D. S. & Schultz, P. G. (2001). Monitoring the conformational fluctuations of DNA hairpins using single-pair fluorescence resonance energy transfer. Journal of the American Chemical Society 123, 42954303.CrossRefGoogle ScholarPubMed
Ha, T. (2001). Single-molecule fluorescence resonance energy transfer. Methods 25, 7886.CrossRefGoogle ScholarPubMed
Ha, T., Rasnik, I., Cheng, W., Babcock, H. P., Gauss, G. H., Lohman, T. M. & Chu, S. (2002). Initiation and re-initiation of DNA unwinding by the Escherichia coli rep helicase. Nature 419, 638641.CrossRefGoogle ScholarPubMed
Hannah, K. C. & Armitage, B. A. (2004). DNA-templated assembly of helical cyanine dye aggregates: a supramolecular chain polymerization. Accounts of Chemical Research 37, 845853.CrossRefGoogle ScholarPubMed
Haq, I. (2006). Reversible small molecule–nucleic acid interactions. In Nucleic acids in chemistry and biology ( Blackburn, G. M., Gait, M. J., Loakes, D. & Williams, D. M.), pp. 341379. Cambridge: Royal Society of Chemistry.Google Scholar
Harada, Y., Sakurada, K., Aoki, T., Thomas, D. D. & Yanagida, T. (1990). Mechanochemical coupling in actomyosin energy transduction studied by in vitro movement assay. Journal of Molecular Biology 216, 4968.CrossRefGoogle ScholarPubMed
Harrison, W. J., Mateer, D. L. & Tiddy, G. J. T. (1996). Liquid-crystalline J-aggregates formed by aqueous ionic cyanine dyes. Journal of Physical Chemistry 100, 23102321.CrossRefGoogle Scholar
Harvey, B. J. & Levitus, M. (2009). Nucleobase-specific enhancement of Cy3 fluorescence. Journal of Fluorescence 19, 443448.CrossRefGoogle ScholarPubMed
Harvey, B. J., Perez, C. & Levitus, M. (2009). DNA sequence-dependent enhancement of Cy3 fluorescence. Photochemical and Photobiological Sciences 8, 11051110.CrossRefGoogle ScholarPubMed
Haugland, R. P. (1992). Nucleic acid detection and analysis. In Molecular Probes Handbook of Fluorescent Probes and Research Chemicals. Eugene, OR: Molecular Probes.Google Scholar
Heilemann, M., Dedecker, P., Hofkens, J. & Sauer, M. (2009). Photoswitches: Key molecules for subdiffraction-resolution fluorescence imaging and molecular quantification. Laser and Photonics Reviews 3, 180202.CrossRefGoogle Scholar
Heilemann, M., Margeat, E., Kasper, R., Sauer, M. & Tinnefeld, P. (2005). Carbocyanine dyes as efficient reversible single-molecule optical switch. Journal of the American Chemical Society 127, 38013806.CrossRefGoogle ScholarPubMed
Heinlein, T., Knemeyer, J. P., Piestert, O. & Sauer, M. (2003). Photoinduced electron transfer between fluorescent dyes and guanosine residues in DNA-hairpins. Journal of Physical Chemistry B 107, 79577964.CrossRefGoogle Scholar
Herz, A. H. (1977). Aggregation of sensitizing dyes in solution and their adsorption onto silver-halides. Advances in Colloid and Interface Science 8, 237298.CrossRefGoogle Scholar
Hirons, G. T., Fawcett, J. J. & Crissman, H. A. (1994). TOTO and YOYO – new very bright fluorochromes for DNA content analyses by flow-cytometry. Cytometry 15, 129140.CrossRefGoogle ScholarPubMed
Hohng, S., Wilson, T. J., Tan, E., Clegg, R. M., Lilley, D. M. J. & Ha, T. J. (2004). Conformational flexibility of four-way junctions in RNA. Journal of Molecular Biology 336, 6979.CrossRefGoogle ScholarPubMed
Honig, M. G. & Hume, R. I. (1989). Dil and DiO – versatile fluorescent dyes for neuronal labeling and pathway tracing. Trends in Neurosciences 12, 333341.CrossRefGoogle ScholarPubMed
Huang, B., Jones, S. A., Brandenburg, B. & Zhuang, X. W. (2008a). Whole-cell 3D storm reveals interactions between cellular structures with nanometer-scale resolution. Nature Methods 5, 10471052.CrossRefGoogle ScholarPubMed
Huang, B., Wang, W. Q., Bates, M. & Zhuang, X. W. (2008b). Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319, 810813.CrossRefGoogle ScholarPubMed
Huang, Z. X., Ji, D. M., Wang, S. F., Xia, A. D., Koberling, F., Patting, M. & Erdmann, R. (2006). Spectral identification of specific photophysics of Cy5 by means of ensemble and single molecule measurements. Journal of Physical Chemistry A 110, 4550.CrossRefGoogle ScholarPubMed
Hubner, C. G., Renn, A., Renge, I. & Wild, U. P. (2001). Direct observation of the triplet lifetime quenching of single dye molecules by molecular oxygen. Journal of Chemical Physics 115, 96199622.CrossRefGoogle Scholar
Iqbal, A., Arslan, S., Okumus, B., Wilson, T. J., Giraud, G., Norman, D. G., Ha, T. & Lilley, D. M. J. (2008a). Orientation dependence in fluorescent energy transfer between Cy3 and Cy5 terminally attached to double-stranded nucleic acids. Proceedings of the National Academy of Sciences of the United States of America 105, 1117611181.CrossRefGoogle ScholarPubMed
Iqbal, A., Wang, L., Thompson, K. C., Lilley, D. M. J. & Norman, D. G. (2008b). The structure of cyanine 5 terminally attached to double-stranded DNA: implications for fret studies. Biochemistry 47, 78577862.CrossRefGoogle ScholarPubMed
Ishchenko, A. A. (1994). Laser media based on polymethine dyes. Kvantovaya Elektronika 21, 513534.Google Scholar
Ishii, Y., Yoshida, T., Funatsu, T., Wazawa, T. & Yanagida, T. (1999). Fluorescence resonance energy transfer between single fluorophores attached to a coiled-coil protein in aqueous solution. Chemical Physics 247, 163173.CrossRefGoogle Scholar
Jelley, E. E. (1936). Spectral absorption and fluorescence of dyes in the molecular state. Nature 138, 10091010.CrossRefGoogle Scholar
Jia, K., Wan, Y., Xia, A. D., Li, S. Y., Gong, F. B. & Yang, G. Q. (2007). Characterization of photoinduced isomerization and intersystem crossing of the cyanine dye cy3. Journal of Physical Chemistry A 111, 15931597.CrossRefGoogle ScholarPubMed
Joo, C., Balci, H., Ishitsuka, Y., Buranachai, C. & Ha, T. (2008). Advances in single-molecule fluorescence methods for molecular biology. Annual Review of Biochemistry 77, 5176.CrossRefGoogle ScholarPubMed
Kapanidis, A. N., Laurence, T. A., Lee, N. K., Margeat, E., Kong, X. X. & Weiss, S. (2005a). Alternating-laser excitation of single molecules. Accounts of Chemical Research 38, 523533.CrossRefGoogle ScholarPubMed
Kapanidis, A. N., Margeat, E., Ho, S. O., Kortkhonjia, E., Weiss, S. & Ebright, R. H. (2006). Initial transcription by RNA polymerase proceeds through a DNA-scrunching mechanism. Science 314, 11441147.CrossRefGoogle ScholarPubMed
Kapanidis, A. N., Margeat, E., Laurence, T. A., Doose, S., Ho, S. O., Mukhopadhyay, J., Kortkhonjia, E., Mekler, V., Ebright, R. H. & Weiss, S. (2005b). Retention of transcription initiation factor sigma(70) in transcription elongation: single-molecule analysis. Molecular Cell 20, 347356.CrossRefGoogle ScholarPubMed
Khairutdinov, R. F. & Serpone, N. (1997). Photophysics of cyanine dyes: subnanosecond relaxation dynamics in monomers, dimers, and H- and J-aggregates in solution. Journal of Physical Chemistry B 101, 26022610.CrossRefGoogle Scholar
Khimenko, V., Chibisov, A. K. & Gorner, H. (1997). Effects of alkyl substituents in the polymethine chain on the photoprocesses in thiacarbocyanine dyes. Journal of Physical Chemistry A 101, 73047310.CrossRefGoogle Scholar
Kim, H. D., Puglisi, J. D. & Chu, S. (2007). Fluctuations of transfer RNAs between classical and hybrid states. Biophysical Journal 93, 35753582.CrossRefGoogle ScholarPubMed
Kohn, F., Hofkens, J., Gronheid, R., Van der Auweraer, M. & De Schryver, F. C. (2002). Parameters influencing the on- and off-times in the fluorescence intensity traces of single cyanine dye molecules. Journal of Physical Chemistry A 106, 48084814.CrossRefGoogle Scholar
Kolesnikov, A. M. & Mikhailenko, E. A. (1987). The conformations of polymethine dyes. Russian Chemical Reviews 56, 275287.CrossRefGoogle Scholar
Koning, A. J., Lum, P. Y., Williams, J. M. & Wright, R. (1993). DiOC6 staining reveals organelle structure and dynamics in living yeast-cells. Cell Motility and the Cytoskeleton 25, 111128.CrossRefGoogle ScholarPubMed
Koopmans, W. J. A., Brehm, A., Logie, C., Schmidt, T. & van Noort, J. (2007). Single-pair fret microscopy reveals mononucleosome dynamics. Journal of Fluorescence 17, 785795.CrossRefGoogle ScholarPubMed
Korppitommola, J. E. I., Hakkarainen, A., Hukka, T. & Subbi, J. (1991). An isomerization reaction of a cyanine dye in normal-alcohols – microscopic friction and an excited-state barrier crossing. Journal of Physical Chemistry 95, 84828491.CrossRefGoogle Scholar
Kuzmin, V. A. & Darmanyan, A. P. (1978). Study of sterically hindered short-lived isomers of polymethine dyes by laser photolysis. Chemical Physics Letters 54, 159163.CrossRefGoogle Scholar
Lesoine, J. F., Holmberg, B., Maloney, P., Wang, X., Novotny, L. & Knauf, P. A. (2006). Development of an spfret method to measure structure changes in ion exchange proteins. Acta Physiologica 187, 141147.CrossRefGoogle ScholarPubMed
Li, J., Chen, P., Hu, X. J., Zheng, D. S., Okasaki, T. & Hayami, M. (1996). Study on the photofading of near-infrared absorbing indolenine cyanines dyes. Chinese Chemical Letters 7, 11211124.Google Scholar
Luo, G., Wang, M., Konigsberg, W. H. & Xie, X. S. (2007). Single-molecule and ensemble fluorescence assays for a functionally important conformational change in t7 DNA polymerase. Proceedings of the National Academy of Sciences of the United States of America 104, 1261012615.CrossRefGoogle ScholarPubMed
Ma, X. M., Hua, J. L., Wu, W. J., Jin, Y. H., Meng, F. S., Zhan, W. H. & Tian, H. (2008). A high-efficiency cyanine dye for dye-sensitized solar cells. Tetrahedron 64, 345350.CrossRefGoogle Scholar
Mader, O., Reiner, K., Egelhaaf, H. J., Fischer, R. & Brock, R. (2004). Structure property analysis of pentamethine indocyanine dyes: Identification of a new dye for life science applications. Bioconjugate Chemistry 15, 7078.CrossRefGoogle ScholarPubMed
Malicka, J., Gryczynski, I., Kusba, J. & Lakowicz, J. R. (2003). Effects of metallic silver island films on resonance energy transfer between n,n′-(dipropyl)-tetra methyl indocarbocyanine (Cy3)- and n,n′-(dipropyl)-tetramethyl-indodicarbocyanine (Cy5)-labeled DNA. Biopolymers 70, 595603.CrossRefGoogle Scholar
Marme, N., Knemeyer, J. P., Sauer, M. & Wolfrum, J. (2003). Inter- and intramolecular fluorescence quenching of organic dyes by tryptophan. Bioconjugate Chemistry 14, 11331139.CrossRefGoogle ScholarPubMed
Massey, M., Algar, W. R. & Krull, U. J. (2006). Fluorescence resonance energy transfer (FRET) for DNA biosensors: FRET pairs and Förster distances for various dye-DNA conjugates. Analytica Chimica Acta 568, 181189.CrossRefGoogle ScholarPubMed
McKinney, S. A., Tan, E., Wilson, T. J., Nahas, M. K., Declais, A. C., Clegg, R. M., Lilley, D. M. J. & Ha, T. (2004). Single-molecule studies of DNA and RNA four-way junctions. Biochemical Society Transactions 32, 4145.CrossRefGoogle ScholarPubMed
Mikheikin, A. L., Zhuze, A. L. & Zasedatelev, A. S. (2000). Binding of symmetrical cyanine dyes into the DNA minor groove. Journal of Biomolecular Structure and Dynamics 18, 5972.CrossRefGoogle ScholarPubMed
Mishra, A., Behera, R. K., Behera, P. K., Mishra, B. K. & Behera, G. B. (2000). Cyanines during the 1990s: a review. Chemical Reviews 100, 19732011.CrossRefGoogle ScholarPubMed
Momicchioli, F., Baraldi, I. & Berthier, G. (1988). Theoretical-study of trans cis photoisomerism in polymethine cyanines. Chemical Physics 123, 103112.CrossRefGoogle Scholar
Moreira, B. G., You, Y., Behlke, M. A. & Owczarzy, R. (2005). Effects of fluorescent dyes, quenchers, and dangling ends on DNA duplex stability. Biochemical and Biophysical Research Communications 327, 473484.CrossRefGoogle ScholarPubMed
Mujumdar, R. B., Ernst, L. A., Mujumdar, S. R., Lewis, C. J. & Waggoner, A. S. (1993). Cyanine dye labeling reagents – sulfoindocyanine succinimidyl esters. Bioconjugate Chemistry 4, 105111.CrossRefGoogle ScholarPubMed
Murphy, M. C., Rasnik, I., Cheng, W., Lohman, T. M. & Ha, T. J. (2004). Probing single-stranded DNA conformational flexibility using fluorescence spectroscopy. Biophysical Journal 86, 25302537.CrossRefGoogle ScholarPubMed
Murphy, S., Sauerwein, B., Drickamer, H. G. & Schuster, G. B. (1994). Spectroscopy of cyanine dyes in fluid solution at atmospheric and high-pressure – the effect of viscosity on nonradiative processes. Journal of Physical Chemistry 98, 1347613480.CrossRefGoogle Scholar
Netzel, T. L., Nafisi, K., Zhao, M., Lenhard, J. R. & Johnson, I. (1995). Base-content dependence of emission enhancements, quantum yields, and lifetimes for cyanine dyes bound to double-strand DNA: photophysical properties of monomeric and bichromophoric DNA stains. Journal of Physical Chemistry 99, 1793617947.CrossRefGoogle Scholar
Norman, D. G., Grainger, R. J., Uhrin, D. & Lilley, D. M. J. (2000). Location of cyanine-3 on double-stranded DNA: importance for fluorescence resonance energy transfer studies. Biochemistry 39, 63176324.CrossRefGoogle ScholarPubMed
Patil, P. V. & Ballou, D. P. (2000). The use of protocatechuate dioxygenase for maintaining anaerobic conditions in biochemical experiments. Analytical Biochemistry 286, 187192.CrossRefGoogle ScholarPubMed
Ponterini, G. & Momicchioli, F. (1991). Trans cis photoisomerization mechanism of carbocyanines – experimental check of theoretical-models. Chemical Physics 151, 111126.CrossRefGoogle Scholar
Ranjit, S., Gurunathan, K. & Levitus, M. (2009). Photophysics of backbone fluorescent DNA modifications: reducing uncertainties in fret. Journal of Physical Chemistry B 113, 78617866.CrossRefGoogle ScholarPubMed
Rasnik, I., McKinney, S. A. & Ha, T. (2006). Nonblinking and longlasting single-molecule fluorescence imaging. Nature Methods 3, 891893.CrossRefGoogle ScholarPubMed
Rasnik, I., Myong, S., Cheng, W., Lohman, T. M. & Ha, T. (2004). DNA-binding orientation and domain conformation of the E. coli rep helicase monomer bound to a partial duplex junction: single-molecule studies of fluorescently labeled enzymes. Journal of Molecular Biology 336, 395408.CrossRefGoogle Scholar
Renikuntla, B. R., Rose, H. C., Eldo, J., Waggoner, A. S. & Armitage, B. A. (2004). Improved photostability and fluorescence properties through polyfluorination of a cyanine dye. Organic Letters 6, 909912.CrossRefGoogle ScholarPubMed
Roy, R., Hohng, S. & Ha, T. (2008). A practical guide to single-molecule fret. Nature Methods 5, 507516.CrossRefGoogle ScholarPubMed
Rulliere, C. (1976). Laser action and photoisomerization of 3,3′-diethyl oxadicarbocyanine iodide (dodci) – influence of temperature and concentration. Chemical Physics Letters 43, 303308.CrossRefGoogle Scholar
Rust, M. J., Bates, M. & Zhuang, X. W. (2006). Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nature Methods 3, 793795.CrossRefGoogle ScholarPubMed
Rye, H. S., Yue, S., Wemmer, D. E., Quesada, M. A., Haugland, R. P., Mathies, R. A. & Glazer, A. N. (1992). Stable fluorescent complexes of double-stranded DNA with bis-intercalating asymmetric cyanine dyes – properties and applications. Nucleic Acids Research 20, 28032812.CrossRefGoogle ScholarPubMed
Sabanayagam, C. R., Eid, J. S. & Meller, A. (2005a). Long time scale blinking kinetics of cyanine fluorophores conjugated to DNA and its effect on Forster resonance energy transfer. Journal of Chemical Physics 123, 224708.CrossRefGoogle ScholarPubMed
Sabanayagam, C. R., Eid, J. S. & Meller, A. (2005b). Using fluorescence resonance energy transfer to measure distances along individual DNA molecules: Corrections due to nonideal transfer. Journal of Chemical Physics 122, 061103.CrossRefGoogle ScholarPubMed
Sackett, D. L. & Wolff, J. (1987). Nile red as a polarity-sensitive fluorescent-probe of hydrophobic protein surfaces. Analytical Biochemistry 167, 228234.CrossRefGoogle ScholarPubMed
Sahyun, M. R. V., Sharma, D. K. & Serpone, N. (1995). Mechanisms of spectral sensitization of silver-halides – role of sensitizing dye complexation. Journal of Imaging Science and Technology 39, 377385.Google Scholar
Sanborn, M. E., Connolly, B. K., Gurunathan, K. & Levitus, M. (2007). Fluorescence properties and photophysics of the sulfoindocyanine Cy3 linked covalently to DNA. Journal of Physical Chemistry B 111, 1106411074.CrossRefGoogle ScholarPubMed
Sauerwein, B., Murphy, S. & Schuster, G. B. (1992). Dynamics of solute motion – photoisomerization shows linear-dependence on solvent mass. Journal of the American Chemical Society 114, 79207922.CrossRefGoogle Scholar
Schobel, U., Egelhaaf, H. J., Brecht, A., Oelkrug, D. & Gauglitz, G. (1999). New-donor-acceptor pair for fluorescent immunoassays by energy transfer. Bioconjugate Chemistry 10, 11071114.CrossRefGoogle ScholarPubMed
Seidel, C. A. M., Schulz, A. & Sauer, M. H. M. (1996). Nucleobase-specific quenching of fluorescent dyes. 1. Nucleobase one-electron redox potentials and their correlation with static and dynamic quenching efficiencies. Journal of Physical Chemistry 100, 55415553.CrossRefGoogle Scholar
Seifert, J. L., Connor, R. E., Kushon, S. A., Wang, M. & Armitage, B. A. (1999). Spontaneous assembly of helical cyanine dye aggregates on DNA nanotemplates. Journal of the American Chemical Society 121, 29872995.CrossRefGoogle Scholar
Seybold, P. G., Gouterma, M. & Callis, J. (1969). Calorimetric photometric and lifetime determinations of fluorescence yields of fluorescein dyes. Photochemistry and Photobiology 9, 229242.CrossRefGoogle Scholar
Sibbett, W., Taylor, J. R. & Welford, D. (1981). Substituent and environmental-effects on the picosecond lifetimes of the polymethine cyanine dyes. IEEE Journal of Quantum Electronics 17, 500509.CrossRefGoogle Scholar
Sims, P. J., Waggoner, A. S., Wang, C. H. & Hoffman, J. F. (1974). Studies on mechanism by which cyanine dyes measure membrane-potential in red blood-cells and phosphatidylcholine vesicles. Biochemistry 13, 33153330.CrossRefGoogle ScholarPubMed
Singh, M. P., Jennings, T. L. & Strouse, G. F. (2009). Tracking spatial disorder in an optical ruler by time-resolved NSET. Journal of Physical Chemistry B 113, 552558.CrossRefGoogle Scholar
Southwick, P. L., Ernst, L. A., Tauriello, E. W., Parker, S. R., Mujumdar, R. B., Mujumdar, S. R., Clever, H. A. & Waggoner, A. S. (1990). Cyanine dye labeling reagents – carboxymethylindocyanine succinimidyl esters. Cytometry 11, 418430.CrossRefGoogle ScholarPubMed
Steiger, R., Hediger, H., Junod, P., Kuhn, H. & Mobius, D. (1980). Studies on the mechanisms of spectral sensitization of silver-halides. Photographic Science and Engineering 24, 185195.Google Scholar
Sundstrom, V. & Gillbro, T. (1982). Viscosity-dependent isomerization yields of some cyanine dyes – a picosecond laser spectroscopy study. Journal of Physical Chemistry 86, 17881794.CrossRefGoogle Scholar
Terasaki, M., Song, J., Wong, J. R., Weiss, M. J. & Chen, L. B. (1984). Localization of endoplasmic-reticulum in living and glutaraldehyde-fixed cells with fluorescent dyes. Cell 38, 101108.CrossRefGoogle ScholarPubMed
Tolosa, L., Malak, H., Raob, G. & Lakowicz, J. R. (1997). Optical assay for glucose based on the luminescence decay time of the long wavelength dye cy5 (tm). Sensors and Actuators B–Chemical 45, 9399.CrossRefGoogle Scholar
Tomishige, M., Stuurman, N. & Vale, R. (2006). Single-molecule observations of neck linker conformational changes in the kinesin motor protein. Nature Structural & Molecular Biology 13, 887894.CrossRefGoogle ScholarPubMed
Tomschik, M., Zheng, H. C., van Holde, K., Zlatanova, J. & Leuba, S. H. (2005). Fast, long-range, reversible conformational fluctuations in nucleosomes revealed by single-pair fluorescence resonance energy transfer. Proceedings of the National Academy of Sciences of the United States of America 102, 32783283.CrossRefGoogle ScholarPubMed
Torimura, M., Kurata, S., Yamada, K., Yokomaku, T., Kamagata, Y., Kanagawa, T. & Kurane, R. (2001). Fluorescence-quenching phenomenon by photoinduced electron transfer between a fluorescent dye and a nucleotide base. Analytical Sciences 17, 155160.CrossRefGoogle Scholar
Turner, D. C. & Brand, L. (1968). Quantitative estimation of protein binding site polarity. Fluorescence of n-arylaminonaphthalenesulfonates. Biochemistry 7, 3381.CrossRefGoogle ScholarPubMed
Valeur, B. (2001). Molecular Fluorescence: Principles and Applications. Weinheim, Germany: Wiley-VCH.CrossRefGoogle Scholar
van der Meer, B. W. (2002). Kappa-squared: from nuisance to new sense. Reviews in Molecular Biotechnology 82, 181196.CrossRefGoogle ScholarPubMed
Vogelsang, J., Kasper, R., Steinhauer, C., Person, B., Heilemann, M., Sauer, M. & Tinnefeld, P. (2008). A reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dyes. Angewandte Chemie-International Edition 47, 54655469.CrossRefGoogle ScholarPubMed
Vogelsang, J., Cordes, T. & Tinnefeld, P. (2009). Single-molecule photophysics of oxazines on DNA and its application in a fret switch. Photochemical and Photobiological Sciences 8, 486496.CrossRefGoogle Scholar
Waggoner, A. (1976). Optical probes of membrane-potential. Journal of Membrane Biology 27, 317334.CrossRefGoogle ScholarPubMed
Waggoner, A. S., Ernst, L. A. & Ballou, B. (2009). Building new fluorescent probes. In Biomedical Optical Imaging (eds. Fujimoto, J. G. & Farkas, D.), pp. 120131. New York: Oxford University Press.CrossRefGoogle Scholar
Waggoner, A. S. & Mujumdar, R. B. (2000). Rigidized trimethine cyanine dyes. 6133445.Google Scholar
Waldeck, D. H. & Fleming, G. R. (1981). Influence of viscosity and temperature on rotational reorientation – anisotropic absorption studies of 3,3′-diethyloxadicarbocyanine iodide. Journal of Physical Chemistry 85, 26142617.CrossRefGoogle Scholar
West, W. & Geddes, A. L. (1964). Effects of solvents and of solid substrates on visible molecular absorption spectrum of cyanine dyes. Journal of Physical Chemistry 68, 837847.CrossRefGoogle Scholar
West, W. & Pearce, S. (1965). Dimeric state of cyanine dyes. Journal of Physical Chemistry 69, 18941903.CrossRefGoogle Scholar
West, W., Pearce, S. & Grum, F. (1967). Steroisomerism in cyanine dyes-meso-substituted thiacarbocyanines. Journal of Physical Chemistry 71, 13161326.CrossRefGoogle Scholar
Weston, K. D., Carson, P. J., DeAro, J. A. & Buratto, S. K. (1999). Single-molecule detection fluorescence of surface-bound species in vacuum. Chemical Physics Letters 308, 5864.CrossRefGoogle Scholar
Wheatley, P. J. (1959). The crystallography of some cyanine dyes. 2. The molecular and crystal structure of the ethanol solvate of 3,3′-diethylthiacarbocyanine bromide. Journal of the Chemical Society 40964100.CrossRefGoogle Scholar
White, S. S., Li, H. T., Marsh, R. J., Piper, J. D., Leonczek, N. D., Nicolaou, N., Bain, A. J., Ying, L. M. & Klenerman, D. (2006). Characterization of a single molecule DNA switch in free solution. Journal of the American Chemical Society 128, 1142311432.CrossRefGoogle ScholarPubMed
Widengren, J. & Schwille, P. (2000). Characterization of photoinduced isomerization and back-isomerization of the cyanine dye Cy5 by fluorescence correlation spectroscopy. Journal of Physical Chemistry A 104, 64166428.CrossRefGoogle Scholar
Widengren, J., Chmyrov, A., Eggeling, C., Lofdahl, P. A. & Seidel, C. A. M. (2007). Strategies to improve photostabilities in ultrasensitive fluorescence spectroscopy. Journal of Physical Chemistry A 111, 429440.CrossRefGoogle ScholarPubMed
Wu, E. S., Jacobson, K. & Papahadjopoulos, D. (1977). Lateral diffusion in phospholipid multibilayers measured by fluorescence recovery after photobleaching. Biochemistry 16, 39363941.CrossRefGoogle ScholarPubMed
Yasuda, R., Masaike, T., Adachi, K., Noji, H., Itoh, H. & Kinosita, K. (2003). The ATP-waiting conformation of rotating F-1-ATPase revealed by single-pair fluorescence resonance energy transfer. Proceedings of the National Academy of Sciences of the United States of America 100, 93149318.CrossRefGoogle ScholarPubMed
Yildiz, A., Forkey, J. N., McKinney, S. A., Ha, T., Goldman, Y. E. & Selvin, P. R. (2003). Myosin v walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 300, 20612065.CrossRefGoogle ScholarPubMed
Yu, A. C., Tolbert, C. A., Farrow, D. A. & Jonas, D. M. (2002). Solvatochromism and solvation dynamics of structurally related cyanine dyes. Journal of Physical Chemistry A 106, 94079419.CrossRefGoogle Scholar
Zhao, R. & Rueda, D. (2009). RNA folding dynamics by single-molecule fluorescence resonance energy transfer. Methods 49, 112117.CrossRefGoogle ScholarPubMed
Zhuang, X. W., Bartley, L. E., Babcock, H. P., Russell, R., Ha, T. J., Herschlag, D. & Chu, S. (2000). A single-molecule study of RNA catalysis and folding. Science 288, 2048.CrossRefGoogle ScholarPubMed
Zhuang, X. W., Kim, H., Pereira, M. J. B., Babcock, H. P., Walter, N. G. & Chu, S. (2002). Correlating structural dynamics and function in single ribozyme molecules. Science 296, 14731476.CrossRefGoogle ScholarPubMed