Skip to main content
Log in

Clinical Pharmacokinetics of New-Generation Antiepileptic Drugs at the Extremes of Age: An Update

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Epilepsies occur across the entire age range, and their incidence peaks in the first years of life and in the elderly. Therefore, antiepileptic drugs (AEDs) are commonly used at the extremes of age. Rational prescribing in these age groups requires not only an understanding of the drugs’ pharmacodynamic properties, but also careful consideration of potential age-related changes in their pharmacokinetic profile. The present article, which updates a review published in 2006 in this journal, focuses on recent findings on the pharmacokinetics of new-generation AEDs in neonates, infants, children, and the elderly. Significant new information on the pharmacokinetics of new AEDs in the perinatal period has been acquired, particularly for lamotrigine and levetiracetam. As a result of slow maturation of the enzymes involved in glucuronide conjugation, lamotrigine elimination occurs at a particularly slow rate in neonates, and becomes gradually more efficient during the first months of life. In the case of levetiracetam, elimination occurs primarily by renal excretion and is also slow at birth, but drug clearance increases rapidly thereafter and can even double within 1 week. In general, infants older than 2–3 months and children show higher drug clearance (normalized for body weight) than adults. This pattern was confirmed in recent studies that investigated the pediatric pharmacokinetics of several new AEDs, including levetiracetam, rufinamide, stiripentol, and eslicarbazepine acetate. At the other extreme of age, in the elderly, drug clearance is generally reduced compared with younger adults because of less efficient drug-metabolizing activity, decreased renal function, or both. This general pattern, described previously for several AEDs, was confirmed in recent studies on the effect of old age on the clearance of felbamate, levetiracetam, pregabalin, lacosamide, and retigabine. For those drugs which are predominantly eliminated by renal excretion, aging-related pharmacokinetic changes could be predicted by measuring creatinine clearance (CLCR). Overall, most recent findings confirm that age is a major factor influencing the pharmacokinetic profile of AEDs. However, pharmacokinetic variability at any age can be considerable, and the importance of other factors should not be disregarded. These include genetic factors, co-morbidities, and drug interactions, particularly those caused by concomitantly administered AEDs which induce or inhibit drug-metabolizing enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Neligan A, Hauser WA, Sander JW. The epidemiology of the epilepsies. Handb Clin Neurol. 2012;107:113–33.

    Article  PubMed  Google Scholar 

  2. Perucca E. Clinical pharmacokinetics of new-generation antiepileptic drugs at the extremes of age. Clin Pharmacokinet. 2006;45(4):351–63.

    Article  PubMed  CAS  Google Scholar 

  3. Stewart CF, Hampton EM. Effect of maturation on drug disposition in pediatric patients. Clin Pharm. 1987;6(7):548–64.

    PubMed  CAS  Google Scholar 

  4. Morselli PL, Franco Morselli R, Bossi L. Clinical pharmacokinetics in newborns and infants—age-related differences and therapeutic implications. Clin Pharmacokinet. 1980;5(6):485–527.

    Article  PubMed  CAS  Google Scholar 

  5. Kearns GL, Abdel-Rahman SM, Alander SW, et al. Developmental pharmacology—drug disposition, action, and therapy in infants and children. N Engl J Med. 2003;349(12):1157–67.

    Article  PubMed  CAS  Google Scholar 

  6. Perucca E. Drug metabolism in pregnancy, infancy and childhood. Pharmacol Ther. 1987;34(1):129–43.

    Article  PubMed  CAS  Google Scholar 

  7. Patsalos PN, Berry DJ, Bourgeois BF, et al. Antiepileptic drugs—best practice guidelines for therapeutic drug monitoring: a position paper by the subcommission on therapeutic drug monitoring. ILAE Commission on Therapeutic Strategies. Epilepsia. 2008;49(7):1239–76.

    Article  PubMed  CAS  Google Scholar 

  8. Chen H, Yang K, Choi S, et al. Up-regulation of UDP-glucuronosyltransferase (UGT) 1A4 by 17beta-estradiol: a potential mechanism of increased lamotrigine elimination in pregnancy. Drug Metab Dispos. 2009;37(9):1841–7.

    Article  PubMed  CAS  Google Scholar 

  9. Ohman I, Vitols S, Tomson T. Lamotrigine in pregnancy: pharmacokinetics during delivery, in the neonate, and during lactation. Epilepsia. 2000;41(6):709–13.

    Article  PubMed  CAS  Google Scholar 

  10. Mikati MA, Fayad M, Koleilat M, et al. Efficacy, tolerability, and kinetics of lamotrigine in infants. J Pediatr. 2002;141(1):31–5.

    Article  PubMed  CAS  Google Scholar 

  11. Fotopoulou C, Kretz R, Bauer S, et al. Prospectively assessed changes in lamotrigine-concentration in women with epilepsy during pregnancy, lactation and the neonatal period. Epilepsy Res. 2009;85(1):60–4.

    Article  PubMed  CAS  Google Scholar 

  12. Newport DJ, Pennell PB, Calamaras MR, et al. Lamotrigine in breast milk and nursing infants: determination of exposure. Pediatrics. 2008;122(1):e223–31.

    Article  PubMed  Google Scholar 

  13. Hirsch LJ, Arif H, Buchsbaum R, et al. Effect of age and comedication on levetiracetam pharmacokinetics and tolerability. Epilepsia. 2007;48(7):1351–9.

    Article  PubMed  CAS  Google Scholar 

  14. Freitas-Lima P, Alexandre V Jr, Pereira LR, et al. Influence of enzyme inducing antiepileptic drugs on the pharmacokinetics of levetiracetam in patients with epilepsy. Epilepsy Res. 2011;94(1–2):117–20.

    Article  PubMed  CAS  Google Scholar 

  15. Johannessen SI, Helde G, Brodtkorb E. Levetiracetam concentrations in serum and in breast milk at birth and during lactation. Epilepsia. 2005;46(5):775–7.

    Article  PubMed  CAS  Google Scholar 

  16. Tomson T, Palm R, Kallen K, et al. Pharmacokinetics of levetiracetam during pregnancy, delivery, in the neonatal period, and lactation. Epilepsia. 2007;48(6):1111–6.

    Article  PubMed  CAS  Google Scholar 

  17. Allegaert K, Lewi L, Naulaers G, et al. Levetiracetam pharmacokinetics in neonates at birth. Epilepsia. 2006;47(6):1068–9.

    Article  PubMed  Google Scholar 

  18. Glauser TA, Mitchell WG, Weinstock A, et al. Pharmacokinetics of levetiracetam in infants and young children with epilepsy. Epilepsia. 2007;48(6):1117–22.

    Article  PubMed  CAS  Google Scholar 

  19. Sharpe CM, Capparelli EV, Mower A, et al. A seven-day study of the pharmacokinetics of intravenous levetiracetam in neonates: marked changes in pharmacokinetics occur during the first week of life. Pediatr Res. 2012;72(1):43–9.

    Article  PubMed  CAS  Google Scholar 

  20. Pellock JM, Glauser TA, Bebin EM, et al. Pharmacokinetic study of levetiracetam in children. Epilepsia. 2001;42(12):1574–9.

    Article  PubMed  CAS  Google Scholar 

  21. Patsalos PN. Clinical pharmacokinetics of levetiracetam. Clin Pharmacokinet. 2004;43(11):707–24.

    Article  PubMed  CAS  Google Scholar 

  22. Merhar SL, Schibler KR, Sherwin CM, et al. Pharmacokinetics of levetiracetam in neonates with seizures. J Pediatr. 2011;159(1):152–4 e3.

    Google Scholar 

  23. Northam RS, Hernandez AW, Litzinger MJ, et al. Oxcarbazepine in infants and young children with partial seizures. Pediatr Neurol. 2005;33(5):337–44.

    Article  PubMed  Google Scholar 

  24. Pina-Garza JE, Espinoza R, Nordli D, et al. Oxcarbazepine adjunctive therapy in infants and young children with partial seizures. Neurology. 2005;65(9):1370–5.

    Article  PubMed  CAS  Google Scholar 

  25. Ohman I, Vitols S, Luef G, et al. Topiramate kinetics during delivery, lactation, and in the neonate: preliminary observations. Epilepsia. 2002;43(10):1157–60.

    Article  PubMed  Google Scholar 

  26. Filippi L, la Marca G, Fiorini P, et al. Topiramate concentrations in neonates treated with prolonged whole body hypothermia for hypoxic ischemic encephalopathy. Epilepsia. 2009;50(11):2355–61.

    Article  PubMed  CAS  Google Scholar 

  27. Johannessen SI, Tomson T. Pharmacokinetic variability of newer antiepileptic drugs: when is monitoring needed? Clin Pharmacokinet. 2006;45(11):1061–75.

    Article  PubMed  CAS  Google Scholar 

  28. Rosenfeld WE, Doose DR, Walker SA, et al. A study of topiramate pharmacokinetics and tolerability in children with epilepsy. Pediatr Neurol. 1999;20(5):339–44.

    Article  PubMed  CAS  Google Scholar 

  29. Manitpisitkul P, Shalayda K, Todd M, et al. Pharmacokinetics and safety of adjunctive topiramate in infants (1–24 months) with refractory partial-onset seizures: a randomized, multicenter, open-label phase 1 study. Epilepsia. 2013;54(1):156–64. doi:10.1111/epi.12019.

    PubMed  Google Scholar 

  30. Mikaeloff Y, Rey E, Soufflet C, et al. Topiramate pharmacokinetics in children with epilepsy aged from 6 months to 4 years. Epilepsia. 2004;45(11):1448–52.

    Article  PubMed  CAS  Google Scholar 

  31. Bouillon-Pichault M, Nabbout R, Chhun S, et al. Topiramate pharmacokinetics in infants and young children: contribution of population analysis. Epilepsy Res. 2011;93(2–3):208–11.

    Article  PubMed  CAS  Google Scholar 

  32. Rey E, Pons G, Olive G. Vigabatrin. Clinical pharmacokinetics. Clin Pharmacokinet. 1992;23:267–78.

    Article  PubMed  CAS  Google Scholar 

  33. Vauzelle-Kervroëdan F, Rey E, Pons G, et al. Pharmacokinetics of the individual enantiomers of vigabatrin in neonates with uncontrolled seizures. Br J Clin Pharmacol. 1996;42(6):779–81.

    Article  PubMed  Google Scholar 

  34. Rey E, Pons G, Richard MO, et al. Pharmacokinetics of the individual enantiomers of vigabatrin (gamma-vinyl GABA) in epileptic children. Br J Clin Pharmacol. 1990;30(2):253–7.

    Article  PubMed  CAS  Google Scholar 

  35. Ohman I, Vitols S, Tomson T. Pharmacokinetics of gabapentin during delivery, in the neonatal period, and lactation: Does a fetal accumulation occur during pregnancy? Epilepsia. 2005;46(10):1621–4.

  36. Haig GM, Bockbrader HN, Wesche DL, et al. Single-dose gabapentin pharmacokinetics and safety in healthy infants and children. J Clin Pharmacol. 2001;41(5):507–14.

    Article  PubMed  CAS  Google Scholar 

  37. Kawada K, Itoh S, Kusaka T, et al. Pharmacokinetics of zonisamide in perinatal period. Brain Dev. 2002;24(2):95–7.

    Article  PubMed  Google Scholar 

  38. Kimura S. Placental transfer, neonatal pharmacokinetics (elimination), transfer via mother milk of zonisamide. Case report of a neonate of mother treated with zonisamide. No To Hattatsu. 1998;30(4):350–1.

    PubMed  CAS  Google Scholar 

  39. Miura H. Developmental and therapeutic pharmacology of antiepileptic drugs. Epilepsia. 2000;41(Suppl 9):2–6.

    Article  PubMed  CAS  Google Scholar 

  40. Miura H. Zonisamide monotherapy with once-daily dosing in children with cryptogenic localization-related epilepsies: clinical effects and pharmacokinetic studies. Seizure. 2004;13(Suppl 1):S17–23.

    Article  PubMed  Google Scholar 

  41. Fattore C, Perucca E. Novel medications for epilepsy. Drugs. 2011;71(16):2151–78.

    Article  PubMed  CAS  Google Scholar 

  42. Almeida L, Minciu I, Nunes T, et al. Pharmacokinetics, efficacy, and tolerability of eslicarbazepine acetate in children and adolescents with epilepsy. J Clin Pharmacol. 2008;48(8):966–77.

    Article  PubMed  CAS  Google Scholar 

  43. Chen C, Casale EJ, Duncan B, et al. Pharmacokinetics of lamotrigine in children in the absence of other antiepileptic drugs. Pharmacotherapy. 1999;19:437–41.

    Article  PubMed  Google Scholar 

  44. Eriksson AS, Hoppu K, Nergardh A, et al. Pharmacokinetic interactions between lamotrigine and other antiepileptic drugs in children with intractable epilepsy. Epilepsia. 1996;37:769–73.

    Article  PubMed  CAS  Google Scholar 

  45. Battino D, Croci D, Granata T, et al. Single-dose pharmacokinetics of lamotrigine in children: influence of age and antiepileptic comedication. Ther Drug Monit. 2001;23:217–22.

    Article  PubMed  CAS  Google Scholar 

  46. Chen C. Validation of a population pharmacokinetic model for adjunctive lamotrigine therapy in children. Brit J Clin Pharmacol. 2000;50:135–45.

    Article  CAS  Google Scholar 

  47. Bartoli A, Guerrini R, Belmonte A, et al. The influence of dosage, age and comedication on steady-state plasma lamotrigine concentrations in epileptic children: a prospective study with preliminary assessment of correlations with clinical response. Ther Drug Monit. 1997;19:252–60.

    Article  PubMed  CAS  Google Scholar 

  48. Armijo JA, Bravo J, Cuadrado A, et al. Lamotrigine serum concentration-to-dose ratio: influence of age and concomitant antiepileptic drugs and dosage implications. Ther Drug Monit. 1999;21:182–90.

    Article  PubMed  CAS  Google Scholar 

  49. Vauzelle-Kervroedan F, Rey E, et al. Influence of concurrent antiepileptic medication on the pharmacokinetics of lamotrigine as add-on therapy in epileptic children. Br J Clin Pharmacol. 1996;4:325–30.

    Google Scholar 

  50. Johannessen Landmark C, Baftiu A, et al. Pharmacokinetic variability of four newer antiepileptic drugs, lamotrigine, levetiracetam, oxcarbazepine, and topiramate: a comparison of the impact of age and comedication. Ther Drug Monit. 2012;34(4):440–5.

    Google Scholar 

  51. He DK, Wang L, Qin J, et al. Population pharmacokinetics of lamotrigine in Chinese children with epilepsy. Acta Pharmacol Sin. 2012;33(11):1417–23.

    Article  PubMed  CAS  Google Scholar 

  52. Zhang S, Wang L, Lu W. Population pharmacokinetics of lamotrigine in Chinese children with epilepsy. Zhongguo Dang Dai Er Ke Za Zhi. 2008;10(2):105–9.

    PubMed  CAS  Google Scholar 

  53. Reimers A, Skogvoll E, Sund JK, et al. Lamotrigine in children and adolescents: the impact of age on its serum concentrations and on the extent of drug interactions. Eur J Clin Pharmacol. 2007;63(7):687–92.

    Article  PubMed  CAS  Google Scholar 

  54. Milovanovic JR, Jankovic SM. Population pharmacokinetics of lamotrigine in patients with epilepsy. Int J Clin Pharmacol Ther. 2009;47(12):752–60.

    PubMed  CAS  Google Scholar 

  55. Fountain NB, Conry JA, Rodríguez-Leyva I, et al. Prospective assessment of levetiracetam pharmacokinetics during dose escalation in 4- to 12-year-old children with partial-onset seizures on concomitant carbamazepine or valproate. Epilepsy Res. 2007;74(1):60–9.

    Article  PubMed  CAS  Google Scholar 

  56. Dahlin MG, Wide K, Ohman I. Age and comedications influence levetiracetam pharmacokinetics in children. Pediatr Neurol. 2010;43(4):231–5.

    Article  PubMed  Google Scholar 

  57. Toublanc N, Sargentini-Maier ML, Lacroix B, et al. Retrospective population pharmacokinetic analysis of levetiracetam in children and adolescents with epilepsy: dosing recommendations. Clin Pharmacokinet. 2008;47(5):333–41.

    Article  PubMed  CAS  Google Scholar 

  58. Chhun S, Jullien V, Rey E, et al. Population pharmacokinetics of levetiracetam and dosing recommendation in children with epilepsy. Epilepsia. 2009;50(5):1150–7.

    Article  PubMed  CAS  Google Scholar 

  59. Snoeck E, Jacqmin P, Sargentini-Maier ML, et al. Modeling and simulation of intravenous levetiracetam pharmacokinetic profiles in children to evaluate dose adaptation rules. Epilepsy Res. 2007;76(2–3):140–7.

    Article  PubMed  CAS  Google Scholar 

  60. Otoul C, De Smedt H, Stockis A. Lack of pharmacokinetic interaction of levetiracetam on carbamazepine, valproic acid, topiramate, and lamotrigine in children with epilepsy. Epilepsia. 2007;48(11):2111–5.

    Article  PubMed  CAS  Google Scholar 

  61. Perucca E. Is there a role for therapeutic drug monitoring of new anticonvulsants? Clin Pharmacokinet. 2000;38:191–204.

    Article  PubMed  CAS  Google Scholar 

  62. Gidal BE, Baltès E, Otoul C, et al. Effect of levetiracetam on the pharmacokinetics of adjunctive antiepileptic drugs: a pooled analysis of data from randomized clinical trials. Epilepsy Res. 2005;64(1–2):1–11.

    Article  PubMed  CAS  Google Scholar 

  63. Sallas WM, Milosavljev S, D’souza J, et al. Pharmacokinetic drug interactions in children taking oxcarbazepine. Clin Pharmacol Ther. 2003;74:138–49.

    Article  PubMed  CAS  Google Scholar 

  64. Pariente-Khayat A, Fran A, Vauzelle-Kervroedan F, et al. Pharmacokinetics of oxcarbazepine as add-on therapy in children. Epilepsia. 1994;35(Suppl. 8):119.

    Google Scholar 

  65. Rey E, Bulteau C, Motte J, et al. Oxcarbazepine pharmacokinetics and tolerability in children with inadequately controlled epilepsy. J Clin Pharmacol. 2004;44:1290–300.

    Article  PubMed  CAS  Google Scholar 

  66. Franco V, Crema F, Iudice A, et al. Novel treatment options for epilepsy: focus on perampanel. Pharmacol Res. 2013;70(1):35–40.

    Article  PubMed  CAS  Google Scholar 

  67. Fycompa (Perampanel). Summary of Product Characteristics. European Medicines Agency. http://www.medicines.org.uk/emc/medicine/26951/SPC#PHARMACOKINETIC_PROPS. Accessed 6 Feb 2013.

  68. Ferrie CD. Rufinamide: a new antiepileptic drug treatment for Lennox–Gastaut syndrome. Expert Rev Neurother. 2010;10(6):851–60.

    Article  PubMed  CAS  Google Scholar 

  69. Perucca E, Cloyd J, Critchley D, et al. Rufinamide: clinical pharmacokinetics and concentration-response relationships in patients with epilepsy. Epilepsia. 2008;49(7):1123–41.

    Article  PubMed  CAS  Google Scholar 

  70. May TW, Boor R, Rambeck B, et al. Serum concentrations of rufinamide in children and adults with epilepsy: the influence of dose, age, and comedication. Ther Drug Monit. 2011;33(2):214–21.

    PubMed  CAS  Google Scholar 

  71. Dahlin MG, Ohman I. Rufinamide in children with refractory epilepsy: pharmacokinetics, efficacy, and safety. Neuropediatrics. 2012;43(5):264–70.

    Article  PubMed  CAS  Google Scholar 

  72. Biton V, Krauss G, Vasquez-Santana B, et al. A randomized, double-blind, placebo-controlled, parallel-group study of rufinamide as adjunctive therapy for refractory partial-onset seizures. Epilepsia. 2011;52(2):234–42.

    PubMed  CAS  Google Scholar 

  73. Diacomit (Stiripentol). Summary of Product Characteristics. European Medicines Agency. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000664/WC500036518.pdf. Accessed 2 Feb 2013.

  74. Bebin M, Bleck TP. New anticonvulsant drugs. Focus on flunarizine, fosphenytoin, midazolam and stiripentol. Drugs. 1994;48(2):153–71.

    Article  PubMed  CAS  Google Scholar 

  75. Luszczki JJ. Third-generation antiepileptic drugs: mechanisms of action, pharmacokinetics and interactions. Pharmacol Rep. 2009;61(2):197–216.

    PubMed  CAS  Google Scholar 

  76. May TW, Boor R, Mayer T, et al. Concentrations of stiripentol in children and adults with epilepsy: the influence of dose, age, and comedication. Ther Drug Monit. 2012;34(4):390–7.

    Article  PubMed  CAS  Google Scholar 

  77. Battino D, Croci D, Rossini A, et al. Topiramate pharmacokinetics in children and adults with epilepsy: a case-matched comparison based on therapeutic drug monitoring data. Clin Pharmacokinet. 2005;44:407–16.

    Article  PubMed  CAS  Google Scholar 

  78. Dahlin MG, Ohman IK. Age and antiepileptic drugs influence topiramate plasma levels in children. Pediatr Neurol. 2004;31:248–53.

    Article  PubMed  Google Scholar 

  79. May TW, Rambeck B, Jürgens U. Serum concentrations of topiramate in patients with epilepsy: influence of dose, age, and comedication. Ther Drug Monit. 2002;24(3):366–74.

    Article  PubMed  CAS  Google Scholar 

  80. Adín J, Gómez MC, Blanco Y, et al. Topiramate serum concentration-to-dose ratio: influence of age and concomitant antiepileptic drugs and monitoring implications. Ther Drug Monit. 2004;26(3):251–7.

    Article  PubMed  Google Scholar 

  81. Vovk T, Jakovljević MB, Kos MK, et al. A nonlinear mixed effects modelling analysis of topiramate pharmacokinetics in patients with epilepsy. Biol Pharm Bull. 2010;33(7):1176–82.

    Article  PubMed  CAS  Google Scholar 

  82. Girgis IG, Nandy P, Nye JS, et al. Pharmacokinetic-pharmacodynamic assessment of topiramate dosing regimens for children with epilepsy 2 to <10 years of age. Epilepsia. 2010;51(10):1954–62.

    Article  PubMed  CAS  Google Scholar 

  83. Perucca E, Birnbaum A, Cloyd JC, et al. Pharmacological and clinical aspects of antiepileptic drug use in the elderly. Epilepsy Res. 2006;68(Suppl 1):849–63.

    Google Scholar 

  84. Turnheim K. When drug therapy gets old: pharmacokinetics and pharmacodynamics in the elderly. Exp Gerontol. 2003;38:843–53.

    Article  PubMed  CAS  Google Scholar 

  85. Gidal BE. Antiepileptic drug formulation and treatment in the elderly: biopharmaceutical considerations. Int Rev Neurobiol. 2007;81:299–311.

    Article  PubMed  CAS  Google Scholar 

  86. Perucca E. Age-related changes in pharmacokinetics: predictability and assessment methods. Int Rev Neurobiol. 2007;81:183–99.

    Article  PubMed  CAS  Google Scholar 

  87. Almeida L, Potgieter JH, Maia J, et al. Pharmacokinetics of eslicarbazepine acetate in patients with moderate hepatic impairment. Eur J Clin Pharmacol. 2008;64(3):267–73.

    Article  PubMed  CAS  Google Scholar 

  88. White JR, Leppik IE, Beattie JL, et al. Long-term use of felbamate: clinical outcomes and effect of age and concomitant antiepileptic drug use on its clearance. Epilepsia. 2009;50(11):2390–6.

    Article  PubMed  CAS  Google Scholar 

  89. Richens A, Banfield CR, Salfi M, et al. Single and multiple dose pharmacokinetics of felbamate in the elderly. Br J Clin Pharmacol. 1997;44:129–34.

    Article  PubMed  CAS  Google Scholar 

  90. Schiltmeyer B, Cawello W, Kropeit D, et al. Pharmacokinetics of the new antiepileptic drug SPM 927 in human subjects with different age and gender [abstract]. Epilepsia. 2004;45(Suppl. 7):313.

    Google Scholar 

  91. Posner J, Holdich T, Crome P. Comparison of lamotrigine pharmacokinetics in young and elderly healthy volunteers. J Pharm Med. 1991;1:121–8.

    Google Scholar 

  92. Arif H, Svoronos A, Resor SR, et al. The effect of age and comedication on lamotrigine clearance, tolerability, and efficacy. Epilepsia. 2011;52(10):1905–13.

    Article  PubMed  CAS  Google Scholar 

  93. Punyawudho B, Ramsay RE, Macias FM, et al. Population pharmacokinetics of lamotrigine in elderly patients. J Clin Pharmacol. 2008;48(4):455–63.

    Article  PubMed  CAS  Google Scholar 

  94. Hussein Z, Posner J. Population pharmacokinetics of lamotrigine monotherapy in patients with epilepsy: retrospective analysis of routine monitoring data. Br J Clin Pharmacol. 1997;43:457–65.

    Article  PubMed  CAS  Google Scholar 

  95. Chan V, Morris RG, Ilett KF, et al. Population pharmacokinetics of lamotrigine. Ther Drug Monit. 2001;23:630–5.

    Article  PubMed  CAS  Google Scholar 

  96. French J. Use of levetiracetam in special populations. Epilepsia. 2001;42(suppl 4):40–3.

    PubMed  Google Scholar 

  97. Contin M, Mohamed S, Albani F, et al. Levetiracetam clinical pharmacokinetics in elderly and very elderly patients with epilepsy. Epilepsy Res. 2012;98(2–3):130–4.

    Article  PubMed  CAS  Google Scholar 

  98. Bockbrader HN, Wesche D, Miller R, et al. A comparison of the pharmacokinetics and pharmacodynamics of pregabalin and gabapentin. Clin Pharmacokinet. 2010;49(10):661–9.

    Article  PubMed  CAS  Google Scholar 

  99. May TW, Rambeck B, Neb R, et al. Serum concentrations of pregabalin in patients with epilepsy: the influence of dose, age, and comedication. Ther Drug Monit. 2007;29:789–94.

    Article  PubMed  CAS  Google Scholar 

  100. Shoji S, Suzuki M, Tomono Y, et al. Population pharmacokinetics of pregabalin in healthy subjects and patients with post-herpetic neuralgia or diabetic peripheral neuropathy. Br J Clin Pharmacol. 2011;72(1):63–76.

    Article  PubMed  CAS  Google Scholar 

  101. Bockbrader HN, Burger P, Knapp L, et al. Population pharmacokinetics of pregabalin in healthy subjects and patients with chronic pain or partial seizures. Epilepsia. 2011;52(2):248–57.

    PubMed  CAS  Google Scholar 

  102. Hermann R, Ferron GM, Erb K, et al. Effects of age and sex on the disposition of retigabine. Clin Pharmacol Ther. 2003;73(1):61–70.

    Article  PubMed  CAS  Google Scholar 

  103. Armijo JA, Pena MA, Adín J, et al. Association between patient age and gabapentin serum concentration-to-dose ratio: a preliminary multivariate analysis. Ther Drug Monit. 2004;26(6):633–7.

    Article  PubMed  CAS  Google Scholar 

  104. Boyd RA, Türck D, Abel RB, et al. Effects of age and gender on single-dose pharmacokinetics of gabapentin. Epilepsia. 1999;40(4):474–9.

    Article  PubMed  CAS  Google Scholar 

  105. Arnoldussen W, Hulsman J, Rentmeester T. Oxcarbazepine (OXBZ) twice daily as effective as OXBZ three times daily: a clinical and pharmacokinetic study in 24 volunteers and 6 patients. Epilepsia. 1992;32(suppl 1):69.

    Google Scholar 

  106. van Heiningen PN, Eve MD, Oosterhuis B, et al. The influence of age on the pharmacokinetics of the antiepileptic agent oxcarbazepine. Clin Pharmacol Ther. 1991;50(4):410–9.

    Article  PubMed  Google Scholar 

  107. Snel S, Jansen JA, Mengel HB, et al. The pharmacokinetics of tiagabine in healthy elderly volunteers and elderly patients with epilepsy. J Clin Pharmacol. 1997;37(11):1015–20.

    Article  PubMed  CAS  Google Scholar 

  108. Doose DR, Larsson KL, Natarajan J, et al. Comparative single-dose pharmacokinetics of topiramate in elderly versus young men and women. Epilepsia. 1998;39(Suppl 6):56.

    Google Scholar 

  109. Haegele KD, Huebert ND, Ebel M, et al. Pharmacokinetics of vigabatrin: implications of creatinine clearance. Clin Pharmacol Ther. 1988;44(5):558–65.

    Article  PubMed  CAS  Google Scholar 

  110. Shah J, Shellenberger K, Canafax D. Zonisamide: biotransformation and pharmacokinetics. In: Levy RH, Mattson RH, Meldrum BS, et al, editors. Antiepileptic drugs. 5th ed. Philadelphia (PA): Lippincott Williams and Wilkins, 2002: p. 872–84.

  111. Wallace J, Shellenberger K, Groves L. Pharmacokinetics of zonisamide in young and elderly subjects. Epilepsia. 1998;39(Suppl 6):190–1.

    Google Scholar 

  112. Perucca E. The pharmacology of new antiepileptic drugs: does a novel mechanism of action really matter? CNS Drugs. 2011;25(11):907–12.

    Article  PubMed  CAS  Google Scholar 

  113. Gustavson LE, Boellner SW, Granneman GR, et al. A single-dose study to define tiagabine pharmacokinetics in pediatric patients with complex partial seizures. Neurology. 1997;48(4):1032–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Domenico Italiano has no conflicts of interest to report. Emilio Perucca received research grants from the European Union, the Italian Medicines Agency, the Italian Ministry of Health, and the Italian Ministry for Education, University and Research. He also received speaker’s or consultancy fees and/or research grants from Bial, Eisai, GSK, Lundbeck, Medichem, Pfizer, Sun Pharma, Supernus, UCB Pharma, Upsher-Smith, and Vertex. No funding has been received by the authors for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio Perucca.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Italiano, D., Perucca, E. Clinical Pharmacokinetics of New-Generation Antiepileptic Drugs at the Extremes of Age: An Update. Clin Pharmacokinet 52, 627–645 (2013). https://doi.org/10.1007/s40262-013-0067-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-013-0067-4

Keywords

Navigation