Skip to main content

Advertisement

Log in

ImmunoPET using engineered antibody fragments: fluorine-18 labeled diabodies for same-day imaging

  • Research Article
  • Published:
Tumor Biology

Abstract

Combining the specificity of tumor-targeting antibodies with the sensitivity and quantification offered by positron emission tomography (PET) provides tremendous opportunities for molecular characterization of tumors in vivo. Until recently, significant challenges have been faced when attempting to combine antibodies which show long biological half-lives and positron-emitting radionuclides with comparably short physical half-lives, in particular 18F (half-life, 109 min). A fast and simple microwave-assisted method of generating N-succinimidyl-4-[18F]fluorobenzoate has been developed and employed for radiolabeling a small, rapidly targeting HER2-specific engineered antibody fragment, the cys-diabody. Using this tracer, HER2-positive tumor xenografts in mice were detected at 1–4 h post-injection by microPET. This confirms the rapid kinetics of [18F]fluorobenzoyl cys-diabody localization, and demonstrates the feasibility of same-day immunoPET imaging. This approach can be broadly applied to antibodies targeting cell surface biomarkers for molecular imaging of tumors and should be highly translatable for clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wu AM, Olafsen T. Antibodies for molecular imaging of cancer. Cancer J. 2008;14(3):191–7.

    Article  PubMed  CAS  Google Scholar 

  2. Olafsen T, Wu AM. Antibody vectors for imaging. Semin Nucl Med. 2008;40(3):167–81.

    Article  Google Scholar 

  3. Nayak TK, Brechbiel MW. Radioimmunoimaging with longer-lived positron-emitting radionuclides: potentials and challenges. Bioconjug Chem. 2009;20(5):825–41.

    Article  PubMed  CAS  Google Scholar 

  4. Pagani M, Stone-Elander S, Larsson SA. Alternative positron emission tomography with non-conventional positron emitters: effects of their physical properties on image quality and potential clinical applications. Eur J Nucl Med. 1997;24(10):1301–27.

    Article  PubMed  CAS  Google Scholar 

  5. Smith-Jones PM, Solit DB, Akhurst T, et al. Imaging the pharmacodynamics of HER2 degradation in response to Hsp90 inhibitors. Nat Biotechnol. 2004;22(6):701–6.

    Article  PubMed  CAS  Google Scholar 

  6. Eder M, Knackmuss S, Le Gall F, et al. 68 Ga-labelled recombinant antibody variants for immuno-PET imaging of solid tumours. Eur J Nucl Med Mol Imaging. 2010;37(7):1397–407.

    Article  PubMed  CAS  Google Scholar 

  7. Hu S, Shively L, Raubitschek A, et al. Minibody: a novel engineered anti-carcinoembryonic antigen antibody fragment (single-chain Fv-CH3) which exhibits rapid, high-level targeting of xenografts. Cancer Res. 1996;56(13):3055–61.

    PubMed  CAS  Google Scholar 

  8. Wu AM, Williams LE, Zieran L, et al. Anti-carcinoembryonic antigen (CEA) diabody for rapid tumor targeting and imaging. Tumor Targeting. 1999;4:47–58.

    CAS  Google Scholar 

  9. Williams LE, Liu A, Wu AM, et al. Figures of merit (FOMs) for imaging and therapy using monoclonal antibodies. Med Phys. 1995;22(12):2025–7.

    Article  PubMed  CAS  Google Scholar 

  10. Cai W, Olafsen T, Zhang X, et al. PET imaging of colorectal cancer in xenograft-bearing mice by use of an 18F-labeled T84.66 anti-carcinoembryonic antigen diabody. J Nucl Med. 2007;48(2):304–10.

    PubMed  CAS  Google Scholar 

  11. Vaidyanathan G, Bigner DD, Zalutsky MR. Fluorine-18-labeled monoclonal antibody fragments: a potential approach for combining radioimmunoscintigraphy and positron emission tomography. J Nucl Med. 1992;33(8):1535–41.

    PubMed  CAS  Google Scholar 

  12. Vaidyanathan G, Zalutsky MR. Labeling proteins with fluorine-18 using N-succinimidyl 4-[18F]fluorobenzoate. Int J Rad Appl Instrum B. 1992;19(3):275–81.

    Article  PubMed  CAS  Google Scholar 

  13. Lang L, Eckelman WC. One-step synthesis of 18F labeled [18F]-N-succinimidyl 4-(fluoromethyl)benzoate for protein labeling. Appl Radiat Isot. 1994;45(12):1155–63.

    Article  PubMed  CAS  Google Scholar 

  14. Choi CW, Lang L, Lee JT, et al. Biodistribution of 18F- and 125I-labeled anti-Tac disulfide-stabilized Fv fragments in nude mice with interleukin 2 alpha receptor-positive tumor xenografts. Cancer Res. 1995;55(22):5323–9.

    PubMed  CAS  Google Scholar 

  15. Hou S, Phung DL, Lin W-Y, et al. Microwave-assisted one-pot synthesis of N-succinimidyl-4[18F]fluorobenzoate ([18F]SFB). J Vis Exp. 2011. doi:10.3791/2755.

  16. Olafsen T, Cheung CW, Yazaki PJ, et al. Covalent disulfide-linked anti-CEA diabody allows site-specific conjugation and radiolabeling for tumor targeting applications. Protein Eng Des Sel. 2004;17(1):21–7.

    Article  PubMed  CAS  Google Scholar 

  17. Pietras RJ, Arboleda J, Reese DM, et al. HER-2 tyrosine kinase pathway targets estrogen receptor and promotes hormone-independent growth in human breast cancer cells. Oncogene. 1995;10(12):2435–46.

    PubMed  CAS  Google Scholar 

  18. Sirk SJ, Olafsen T, Barat B, Bauer KB, Wu AM. Site-specific, thiol-mediated conjugation of fluorescent probes to cysteine-modified diabodies targeting CD20 or HER2. Bioconjug Chem. 2008;19(12):2527–34.

    Article  PubMed  CAS  Google Scholar 

  19. Defrise M, Kinahan PE, Townsend DW, et al. Exact and approximate rebinning algorithms for 3-D PET data. IEEE Trans Med Imaging. 1997;16(2):145–58.

    Article  PubMed  CAS  Google Scholar 

  20. Loening AM, Gambhir SS. AMIDE: a free software tool for multimodality medical image analysis. Mol Imaging. 2003;2(3):131–7.

    Article  PubMed  Google Scholar 

  21. Huang SC, Truong D, Wu HM, et al. An internet-based “kinetic imaging system” (KIS) for MicroPET. Mol Imaging Biol. 2005;7(5):330–41.

    Article  PubMed  Google Scholar 

  22. Liu K, Lepin EJ, Wang MW, et al. Microfluidic-based 18F-labeling of biomolecules for immuno-positron emission tomography. Mol Imaging. 2011;10(3):168–76.

    PubMed  Google Scholar 

  23. Venisnik KM, Olafsen T, Gambhir SS, Wu AM. Fusion of Gaussia luciferase to an engineered anti-carcinoembryonic antigen (CEA) antibody for in vivo optical imaging. Mol Imaging Biol. 2007;9(5):267–77.

    Article  PubMed  Google Scholar 

  24. Olafsen T, Sirk SJ, Betting DJ, et al. ImmunoPET imaging of B-cell lymphoma using 124I-anti-CD20 scFv dimers (diabodies). Protein Eng Des Sel. 2010;23(4):243–9.

    Article  PubMed  CAS  Google Scholar 

  25. Robinson MK, Doss M, Shaller C, et al. Quantitative immuno-positron emission tomography imaging of HER2-positive tumor xenografts with an iodine-124 labeled anti-HER2 diabody. Cancer Res. 2005;65(4):1471–8.

    Google Scholar 

  26. Aguilar Z, Akita RW, Finn RS, et al. Biologic effects of heregulin/neu differentiation factor on normal and malignant human breast and ovarian epithelial cells. Oncogene. 1999;18(44):6050–62.

    Article  PubMed  CAS  Google Scholar 

  27. Rudnick SI, Adams GP. Affinity and avidity in antibody-based tumor targeting. Cancer Biother Radiopharm. 2009;24(2):155–61.

    Article  PubMed  CAS  Google Scholar 

  28. Lofblom J, Feldwisch J, Tolmachev V, et al. Affibody molecules: engineered proteins for therapeutic, diagnostic and biotechnological applications. FEBS Lett. 2010;584(12):2670–80.

    Article  PubMed  CAS  Google Scholar 

  29. Baum RP, Prasad V, Muller D, et al. Molecular imaging of HER2-expressing malignant tumors in breast cancer patients using synthetic 111In- or 68Ga-labeled affibody molecules. J Nucl Med. 2010;51(6):892–7.

    Article  PubMed  Google Scholar 

  30. Kiesewetter DO, Kramer-Marek G, Ma Y, Capala J. Radiolabeling of HER2 specific Affibody(R) molecule with F-18. J Fluor Chem. 2008;129(9):799–805.

    Article  PubMed  CAS  Google Scholar 

  31. Kramer-Marek G, Kiesewetter DO, Martiniova L, et al. [18F]FBEM-Z(HER2:342)-Affibody molecule—a new molecular tracer for in vivo monitoring of HER2 expression by positron emission tomography. Eur J Nucl Med Mol Imaging. 2008;35(5):1008–18.

    Article  PubMed  CAS  Google Scholar 

  32. Cheng Z, De Jesus OP, Namavari M, et al. Small-animal PET imaging of human epidermal growth factor receptor type 2 expression with site-specific 18F-labeled protein scaffold molecules. J Nucl Med. 2008;49(5):804–13.

    Article  PubMed  CAS  Google Scholar 

  33. McBride WJ, Sharkey RM, Karacay H, et al. A novel method of 18F radiolabeling for PET. J Nucl Med. 2009;50(6):991–8.

    Article  PubMed  CAS  Google Scholar 

  34. Nwe K, Brechbiel MW. Growing applications of “click chemistry” for bioconjugation in contemporary biomedical research. Cancer Biother Radiopharm. 2009;24(3):289–302.

    Article  PubMed  CAS  Google Scholar 

  35. Wu AM, Yazaki PJ, Tsai S, et al. High-resolution microPET imaging of carcinoembryonic antigen-positive xenografts by using a copper-64-labeled engineered antibody fragment. Proc Natl Acad Sci U S A. 2000;97(15):8495–500.

    Article  PubMed  CAS  Google Scholar 

  36. Sundaresan G, Yazaki PJ, Shively JE, et al. 124I-labeled engineered anti-CEA minibodies and diabodies allow high-contrast, antigen-specific small-animal PET imaging of xenografts in athymic mice. J Nucl Med. 2003;44(12):1962–9.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the members of the Wu and Shen labs for their many helpful discussions and contributions. The assistance of Dr. David Stout and Waldemar Ladno of the Crump Institute Small Animal Imaging Facility is greatly appreciated. Funding was provided by National Institutes of Health grants CA086306, CA119367, CA016042; Department of Energy DE-SC0001220, and California Breast Cancer Research Program 14GB-0157. Tove Olafsen and Anna Wu declare a financial interest in ImaginAb, Inc.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna M. Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olafsen, T., Sirk, S.J., Olma, S. et al. ImmunoPET using engineered antibody fragments: fluorine-18 labeled diabodies for same-day imaging. Tumor Biol. 33, 669–677 (2012). https://doi.org/10.1007/s13277-012-0365-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-012-0365-8

Keywords

Navigation