Skip to main content

Advertisement

Log in

Diagnostic Performance of 68Ga-DOTATATE PET/CT, 18F-FDG PET/CT and 131I-MIBG Scintigraphy in Mapping Metastatic Pheochromocytoma and Paraganglioma

  • Original Article
  • Published:
Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

An Erratum to this article was published on 29 April 2015

Abstract

Purpose

To evaluate the diagnostic performance of 68Ga-DOTATATE 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)/computed tomography (CT), 18F-FDG PET/CT and 131I-MIBG scintigraphy in the mapping of metastatic pheochromocytoma and paraganglioma.

Materials and Methods

Seventeen patients (male = 8, female = 9; age range, 13–68 years) with clinically proven or suspicious metastatic pheochromocytoma or paraganglioma were included in this prospective study. Twelve patients underwent all three modalities, whereas five patients underwent 68Ga-DOTATATE and 131I-MIBG without 18F-FDG. A composite reference standard derived from anatomical and functional imaging findings, along with histopathological information, was used to validate the findings. Results were analysed on a per-patient and on per-lesion basis. Sensitivity and accuracy were assessed using McNemar’s test.

Results

On a per-patient basis, 14/17 patients were detected in 68Ga-DOTATATE, 7/17 patients in 131I-MIBG, and 10/12 patients in 18F-FDG. The sensitivity and accuracy of 68Ga-DOTATATE, 131I-MIBG and 18F-FDG were (93.3 %, 94.1 %), (46.7 %, 52.9 %) and (90.9 %, 91.7 %) respectively. On a per-lesion basis, an overall of 472 positive lesions were detected; of which 432/472 were identified by 68Ga-DOTATATE, 74/472 by 131I-MIBG, and 154/300 (patient, n = 12) by 18F-FDG. The sensitivity and accuracy of 68Ga-DOTATATE, 131I-MIBG and 18F-FDG were (91.5 %, 92.6 % p < 0.0001), (15.7 %, 26.0 % p < 0.0001) and (51.3 %, 57.8 % p < 0.0001) respectively. Discordant lesions were demonstrated on 68Ga-DOTATATE, 131I-MIBG and 18F-FDG.

Conclusions

Ga-DOTATATE PET/CT shows high diagnostic accuracy than 131I-MIBG scintigraphy and 18F-FDG PET/ CT in mapping metastatic pheochromocytoma and paraganglioma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Harari A, Inabnet 3rd WB. Malignant pheochromocytoma: a review. Am J Surg. 2010;201:700–8.

    Article  PubMed  Google Scholar 

  2. Ilias I, Pacak K. Anatomical and functional imaging of metastatic pheochromocytoma. Ann N Y Acad Sci. 2004;1018:495–504.

    Article  CAS  PubMed  Google Scholar 

  3. Amar L, Baudin E, Burnichon N, et al. Succinate dehydrogenase B gene mutations predict survival in patients with malignant pheochromocytomas or paragangliomas. J Clin Endocrinol Metab. 2007;10:3822–8.

    Article  Google Scholar 

  4. Ricketts CJ, Forman JR, Rattenberry E, et al. Tumor risks and genotype-phenotype-proteotype analysis in 358 patients with germline mutations in SDHB and SDHD. Hum Mutat. 2010;31:41–51.

    Article  CAS  PubMed  Google Scholar 

  5. Agarwal A, Mehrotra PK, Jain M, Gupta SK, Mishra A, Chand G, et al. Size of the tumor and pheochromocytoma of the adrenal gland scaled score (PASS): can they predict malignancy? World J Surg. 2010;34:3022–8.

    Article  PubMed  Google Scholar 

  6. Feng F, Zhu Y, Wang X, Wu Y, Zhou W, Jin X, et al. Predictive factors for malignant pheochromocytoma: analysis of 136 patients. J Urol. 2011;185:1583–90.

    Article  PubMed  Google Scholar 

  7. Ayala-Ramirez M, Feng L, Johnson MM, Ejaz S, Habra MA, Rich T, et al. Clinical risk factors for malignancy and overall survival in patients with pheochromocytomas and sympathetic paragangliomas: primary tumor size and primary tumor location as prognostic indicators. J Clin Endocrinol Metab. 2010;96:717–25.

    Article  PubMed  Google Scholar 

  8. Korevaar TI, Grossman AB. Pheochromocytomas and paragangliomas: assessment of malignant potential. Endocrine. 2011;40:354–65.

    Article  CAS  PubMed  Google Scholar 

  9. Forssell-Aronsson E, Schuler E, Ahlman H. Advances in the diagnostic imaging of pheochromocytoma. Rep Med Imaging. 2011;4:19–37.

    Article  Google Scholar 

  10. Taieb D, Rubello D, Al-Nahhas A, Calzada M, Marzola MC, Hindie E. Modern PET imaging for paragangliomas: relation to genetic mutations. Eur J Surg Oncol. 2011;37:662–8.

    Article  CAS  PubMed  Google Scholar 

  11. Wiseman GA, Pacak K, O’Dorisio MS, Neumann DR, Waxman AD, Mankoff DA, et al. Usefulness of 123I-MIBG scintigraphy in the evaluation of patients with known or suspected primary or metastatic pheochromocytoma or paraganglioma: results from a prospective multicenter trial. J Nucl Med. 2009;50:1448–54.

    Article  CAS  PubMed  Google Scholar 

  12. Ilias I, Divgi C, Pacak K. Current role of metaiodobenzylguanidine in the diagnosis of pheochromocytoma and medullary thyroid cancer. Semin Nucl Med. 2011;41:364–8.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Fonte JS, Robles JF, Chen CC, Reynolds J, Whatley M, Ling A, et al. False-negative 123I-MIBG SPECT is most commonly found in SDHB-related pheochromocytoma or paraganglioma with high frequency to develop metastatic disease. Endocr Relat Cancer. 2012;19:83–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Timmers HJLM, Chen CC, Carrasquillo JA, Whatley M, Ling A, Havekes B, et al. Comparison of 18F-fluoro-L-DOPA, 18F-fluoro-deoxyglucose, and 18F-fluorodopamine PET and 123I-MIBG scintigraphy in the localization of pheochromocytoma and paraganglioma. J Clin Endocrinol Metab. 2009;94:4757–67.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Taïeb D, Sebag F, Barlier A, Tessonnier L, Palazzo FF, Morange I, et al. 18F-FDG avidity of pheochromocytomas and paragangliomas: a new molecular imaging signature? J Nucl Med. 2009;50:711–7.

    Article  PubMed  Google Scholar 

  16. Cantalamessa A, Caobelli F, Paghera B, Caobelli A, Vavassori F. Role of 18F-FDG PET/CT, 123I-MIBG SPECT, and CT in restaging patients affected by malignant pheochromocytoma. Nucl Med Mol Imaging. 2011;45:125–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Timmers HJ, Kozupa A, Chen CC, Carrasquillo JA, Ling A, Eisenhofer G, et al. Superiority of fluorodeoxyglucose positron emission tomography to other functional imaging techniques in the evaluation of metastatic SDHB-associated pheochromocytoma and paraganglioma. J Clin Oncol. 2007;25:2262–9.

    Article  PubMed  Google Scholar 

  18. Mundschenk J, Unger N, Schulz S, Hollt V, Steinke R, Lehnert H. Somatostatin receptor subtypes in human pheochromocytoma: subcellular expression pattern and functional relevance for octreotide scintigraphy. J Clin Endocrinol Metab. 2003;88:5150–7.

    Article  CAS  PubMed  Google Scholar 

  19. Tenenbaum F, Lumbroso J, Schlumberger M, Mure A, Plouin PF, Caillou B, et al. Comparison of radiolabeled octreotide and meta-iodobenzylguanidine (MIBG) scintigraphy in malignant pheochromocytoma. J Nucl Med. 1995;36:1–6.

    CAS  PubMed  Google Scholar 

  20. Koopmans KP, Jager PL, Kema IP, Kerstens MN, Albers F, Dullaart RP. 111In-octreotide is superior to 123Imetaiodobenzylguanidine for scintigraphic detection of head and neck paragangliomas. J Nucl Med. 2008;49:1232–7.

    Article  PubMed  Google Scholar 

  21. Chen L, Li F, Zhuang H, Jing H, Du Y, Zeng Z. 99mTc-HYNIC-TOC scintigraphy is superior to 131I-MIBG imaging in the evaluation of extraadrenal pheochromocytoma. J Nucl Med. 2009;50:397–400.

    Article  CAS  PubMed  Google Scholar 

  22. Reubi JC, Schar JC, Waser B, Wenger S, Heppeler A, Schmitt JS, et al. Affinity profiles for human somatostatin receptor subtypes SST1-SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use. Eur J Nucl Med. 2000;27:273–82.

    Article  CAS  PubMed  Google Scholar 

  23. Naji M, Zhao C, Welsh SJ, Meades R, Win Z, Ferrarese A, et al. 68Ga-DOTA-TATE PET vs. 123I-MIBG in identifying malignant neural crest tumours. Mol Imaging Biol. 2010;13:769–75.

    Article  Google Scholar 

  24. van der Harst E, de Herder WW, Bruining HA, Bonjer HJ, de Krijger RR, Lamberts SWJ, et al. [123I]Metaiodobenzylguanidine and [111In]Octreotide uptake in benign and malignant pheochromocytomas. J Clin Endocrinol Metab. 2001;86:685–93.

    PubMed  Google Scholar 

  25. Win Z, Al-Nahhas A, Towey D, Todd JF, Rubello D, Lewington V, et al. 68Ga-DOTATATE PET in neuroectodermal tumours: first experience. Nucl Med Commun. 2007;28:359–63.

    Article  PubMed  Google Scholar 

  26. Sharma P, Dhull V, Arora S, Gupta P, Kumar R, Durgapal P, et al. Diagnostic accuracy of 68Ga-DOTANOC PET/CT imaging in pheochromocytoma. Eur J Nucl Med Mol Imaging. 2013;1–11.

  27. Taïeb D, Timmers H, Hindié E, Guillet B, Neumann H, Walz M, et al. EANM 2012 guidelines for radionuclide imaging of phaeochromocytoma and paraganglioma. Eur J Nucl Med Mol Imaging. 2012;39:1977–95.

    Article  PubMed  Google Scholar 

  28. Havekes B, King K, Lai EW, Romijn JA, Corssmit EPM, Pacak K. New imaging approaches to phaeochromocytomas and paragangliomas. Clin Endocrinol. 2010;72:9.

    Google Scholar 

  29. Sharma P, Dhull VS, Jeph S, Reddy RM, Singh H, Naswa N, et al. Can hybrid SPECT-CT overcome the limitations associated with poor imaging properties of 131I-MIBG?: comparison with planar scintigraphy and SPECT in pheochromocytoma. Clin Nucl Med. 2013;38:e346–53.

    Article  PubMed  Google Scholar 

  30. Rozovsky K, Koplewitz BZ, Krausz Y, Revel-Vilk S, Weintraub M, Chisin R, et al. Added value of SPECT/CT for correlation of MIBG scintigraphy and diagnostic CT in neuroblastoma and pheochromocytoma. AJR Am J Roentgenol. 2008;190:1085–90.

    Article  PubMed  Google Scholar 

  31. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45:228–47.

    Article  CAS  PubMed  Google Scholar 

  32. Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50:122S–50S.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Kroiss A, Putzer D, Uprimny C, Decristoforo C, Gabriel M, Santner W, et al. Functional imaging in phaeochromocytoma and neuroblastoma with 68Ga-DOTA-Tyr 3-octreotide positron emission tomography and 123I-metaiodobenzylguanidine. Eur J Nucl Med Mol Imaging. 2010;38:865–73.

    Article  Google Scholar 

  34. Furuta N, Kiyota H, Yoshigoe F, Hasegawa N, Ohishi Y. Diagnosis of pheochromocytoma using [123I]-compared with [131I]-metaiodobenzylguanidine scintigraphy. Int J Urol. 1999;6:119–24.

    Article  CAS  PubMed  Google Scholar 

  35. Kayani I, Bomanji JB, Groves A, Conway G, Gacinovic S, Win T, et al. Functional imaging of neuroendocrine tumors with combined PET/CT using 68Ga-DOTATATE (DOTA-DPhe1, Tyr3-octreotate) and 18F-FDG. Cancer. 2008;112:2447–55.

    Article  PubMed  Google Scholar 

  36. Kayani I, Conry BG, Groves AM, Win T, Dickson J, Caplin M, et al. A comparison of 68Ga-DOTATATE and 18F-FDG PET/CT in pulmonary neuroendocrine tumors. J Nucl Med. 2009;50:1927–32.

    Article  PubMed  Google Scholar 

  37. Oh S, Prasad V, Lee DS, Baum RP. Effect of peptide receptor radionuclide therapy on somatostatin receptor status and glucose metabolism in neuroendocrine tumors: intraindividual comparison of Ga-68 DOTANOC PET/CT and F-18 FDG PET/CT. Int J Mol Imaging. 2011; 2011:524130.

  38. Gabriel M, Decristoforo C, Kendler D, Dobrozemsky G, Heute D, Uprimny C, et al. 68Ga-DOTA-Tyr3-octreotide PET in neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and CT. J Nucl Med. 2007;48:508–18.

    Article  CAS  PubMed  Google Scholar 

  39. Krausz Y, Freedman N, Rubinstein R, Lavie E, Orevi M, Tshori S, et al. 68Ga-DOTA-NOC PET/CT imaging of neuroendocrine tumors: comparison with 111In-DTPA-octreotide (OctreoScan®). Mol Imaging Biol. 2010;13:583–93.

    Article  Google Scholar 

  40. Maecke HR, Reubi JC. Somatostatin receptors as targets for nuclear medicine imaging and radionuclide treatment. J Nucl Med. 2011;52:841–4.

    Article  CAS  PubMed  Google Scholar 

  41. Van Essen M, Krenning EP, De Jong M, Valkema R, Kwekkeboom DJ. Peptide receptor radionuclide therapy with radiolabelled somatostatin analogues in patients with somatostatin receptor positive tumours. Acta Oncol. 2007;46:723–34.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Nor Asiah Muhamad, Dr. Siti Zarina Amir Hassan, Dr. Nor Salita Ali, Dr. Jia Him Lau and all our staff for their assistance in this study. We also thank the Director-General of Health in Malaysia for permission to publish this paper.

Conflicts of Interest

This research was funded by the Advanced Medical and Dental Institute, University Sains Malaysia. Teik Hin Tan, Boon Nang Lee, Zanariah Hussein, Fathinul Fikri Ahmad Saad and Ibrahim Lutfi Shuaib declare that they have no conflicts of interest.

Ethics Statement

Informed consent was obtained from all patients for being included in the study. This study is approved by local ethics committee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teik Hin Tan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, T.H., Hussein, Z., Saad, F.F.A. et al. Diagnostic Performance of 68Ga-DOTATATE PET/CT, 18F-FDG PET/CT and 131I-MIBG Scintigraphy in Mapping Metastatic Pheochromocytoma and Paraganglioma. Nucl Med Mol Imaging 49, 143–151 (2015). https://doi.org/10.1007/s13139-015-0331-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13139-015-0331-7

Keywords

Navigation