Skip to main content

Advertisement

Log in

Metabolic Tumor Volume Measured by F-18 FDG PET/CT can Further Stratify the Prognosis of Patients with Stage IV Non-Small Cell Lung Cancer

  • Original Article
  • Published:
Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to further stratify prognostic factors in patients with stage IV non-small cell lung cancer (NSCLC) by measuring their metabolic tumor volume (MTV) using F-18 fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT).

Materials and Methods

The subjects of this retrospective study were 57 patients with stage IV NSCLC. MTV, total lesion glycolysis (TLG), and maximum standardized uptake value (SUVmax) were measured on F-18 FDG PET/CT in both the primary lung lesion as well as metastatic lesions in torso. Optimal cutoff values of PET parameters were measured by receiver operating characteristic (ROC) curve analysis. Kaplan-Meier survival curves were used for evaluation of progression-free survival (PFS). The univariate and multivariate Cox proportional hazards models were used to select the significant prognostic factors.

Results

Univariate analysis showed that both MTV and TLG of primary lung lesion (MTV-lung and TLG-lung) were significant factors for prediction of PFS (P < 0.001, P = 0.038, respectively). Patients showing lower values of MTV-lung and TLG-lung than the cutoff values had significantly longer mean PFS than those with higher values. Hazard ratios (95 % confidence interval) of MTV-lung and TLG-lung measured by univariate analysis were 6.4 (2.5–16.3) and 2.4 (1.0–5.5), respectively. Multivariate analysis revealed that MTV-lung was the only significant factor for prediction of prognosis. Hazard ratio was 13.5 (1.6–111.1, P = 0.016).

Conclusion

Patients with stage IV NSCLC could be further stratified into subgroups of significantly better and worse prognosis by MTV of primary lung lesion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Huang W, Zhou T, Ma L, Sun H, Gong H, Wang J, et al. Standard uptake value and metabolic tumor volume of F-18 FDG PET/CT predict short-term outcome early in the course of chemoradiotherapy in advanced non-small cell lung cancer. Eur J Nucl Med Mol Imaging. 2011;38:1628–35.

    Article  PubMed  CAS  Google Scholar 

  2. Feng M, Kong FM, Gross M, Fernando S, Hayman JA, Ten Haken RK. Using fluorodeoxyglucose positron emission tomography to assess tumor volume during radiotherapy for non-small-cell lung cancer and its potential impact on adaptive dose escalation and normal tissue sparing. Int J Radiat Oncol Biol Phys. 2009;73:1228–34.

    Article  PubMed  Google Scholar 

  3. William Jr WN, Lin HY, Lee JJ, Lippman SM, Roth JA, Kim ES. Revisiting stage IIIB and IV non-small cell lung cancer: analysis of the surveillance, epidemiology, and end results data. Chest. 2009;136:701–9.

    Article  PubMed  Google Scholar 

  4. Postmus PE, Brambilla E, Chansky K, Crowley J, Goldstraw P, Patz EF, et al. The IASLC Lung Cancer Staging Project: proposals for revision of the M descriptors in the forthcoming (seventh) edition of the TNM classification of lung cancer. J Thorac Oncol. 2007;2:686–93.

    Article  PubMed  Google Scholar 

  5. Socinski MA, Morris DE, Masters GA, Lilenbaum R. Chemotherapeutic management of stage IV non-small cell lung cancer. Chest. 2003;123:226S–43S.

    Article  PubMed  Google Scholar 

  6. Roedl JB, Colen RR, Holalkere NS, Fischman AJ, Choi NC, Blake MA. Adenocarcinomas of the esophagus: response to chemoradiotherapy is associated with decrease of metabolic tumor volume as measured on PET-CT. Comparison to histopathologic and clinical response evaluation. Radiother Oncol. 2008;89:278–86.

    Article  PubMed  CAS  Google Scholar 

  7. La TH, Filion EJ, Turnbull BB, Chu JN, Lee P, Nguyen K, et al. Metabolic tumor volume predicts for recurrence and death in head-and-neck cancer. Int J Radiat Oncol Biol Phys. 2009;74:1335–41.

    Article  PubMed  Google Scholar 

  8. Chung HH, Kwon HW, Kang KW, Park NH, Song YS, Chung JK, et al. Prognostic value of preoperative metabolic tumor volume and total lesion glycolysis in patients with epithelial ovarian cancer. Ann Surg Oncol. 2012;19:1966–72.

    Article  PubMed  Google Scholar 

  9. Gulec SA, Suthar RR, Barot TC, Pennington K. The prognostic value of functional tumor volume and total lesion glycolysis in patients with colorectal cancer liver metastases undergoing Y-90 selective internal radiation therapy plus chemotherapy. Eur J Nucl Med Mol Imaging. 2011;38:1289–95.

    Article  PubMed  CAS  Google Scholar 

  10. Liu FY, Chao A, Lai CH, Chou HH, Yen TC. Metabolic tumor volume by F-18 FDG PET/CT is prognostic for stage IVB endometrial carcinoma. Gynecol Oncol. 2012;125:566–71.

    Article  PubMed  Google Scholar 

  11. Song MK, Chung JS, Shin HJ, Lee SM, Lee SE, Lee HS, et al. Clinical significance of metabolic tumor volume by PET/CT in stages II and III of diffuse large B cell lymphoma without extranodal site involvement. Ann Hematol. 2012;91:697–703.

    Article  PubMed  CAS  Google Scholar 

  12. Oh JR, Seo JH, Chong A, Min JJ, Song HC, Kim YC, et al. Whole-body metabolic tumour volume of F-18 FDG PET/CT improves the prediction of prognosis in small cell lung cancer. Eur J Nucl Med Mol Imaging. 2012;39:925–35.

    Article  PubMed  Google Scholar 

  13. Dibble EH. Lara Alvarez AC, Truong MT, Mercier G, Cook EF, Subramaniam RM. F-18 FDG metabolic tumor volume and total glycolytic activity of oral cavity and oropharyngeal squamous cell cancer: adding value to clinical staging. J Nucl Med. 2012;53:709–15.

    Article  PubMed  CAS  Google Scholar 

  14. Kim BS, Kim IJ, Kim SJ, Nam HY, Pak KJ, Kim KY, et al. The prognostic value of the metabolic tumor volume in FIGO stage IA to IIB cervical cancer for tumor recurrence: Measured by F-18 FDG PET/CT. Nucl Med Mol Imaging. 2011;45:36–42.

    Article  CAS  Google Scholar 

  15. Choi KH, Yoo IR, Han EJ. kim YS, Kim GW, Na SJ, et al. Prognostic value of metabolic tumor volume measured by F-18 FDG PET/CT in locally advanced head and neck squamous cell carcinomas treated by surgery. Nucl Med Mol Imaging. 2011;45:43–51.

    Article  Google Scholar 

  16. Lee P, Bazan JG, Lavori PW, Weerasuriya DK, Quon A, Le QT, et al. Metabolic tumor volume is an independent prognostic factor in patients treated definitively for non-small-cell lung cancer. Clin Lung Cancer. 2012;13:52–8.

    Article  PubMed  Google Scholar 

  17. Meng X, Sun X, Mu D, Xing L, Ma L, Zhang B, et al. Noninvasive evaluation of microscopic tumor extensions using standardized uptake value and metabolic tumor volume in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2012;82:960–6.

    Article  PubMed  Google Scholar 

  18. Yan H, Wang R, Zhao F, Zhu K, Jiang S, Zhao W, et al. Measurement of tumor volume by PET to evaluate prognosis in patients with advanced non-small cell lung cancer treated by non-surgical therapy. Acta Radiol. 2011;52:646–50.

    Article  PubMed  Google Scholar 

  19. Basaki K, Abe Y, Aoki M, Kondo H, Hatayama Y, Nakaji S. Prognostic factors for survival in stage III non-small-cell lung cancer treated with definitive radiation therapy: impact of tumor volume. Int J Radiat Oncol Biol Phys. 2006;64:449–54.

    Article  PubMed  Google Scholar 

  20. Kawaguchi T, Takada M, Kubo A, Matsumura A, Fukai S, Tamura A, et al. Performance status and smoking status are independent favorable prognostic factors for survival in non-small cell lung cancer: a comprehensive analysis of 26,957 patients with NSCLC. J Thorac Oncol. 2010;5:620–30.

    PubMed  Google Scholar 

  21. UyBico SJ, Wu CC, Suh RD, Le NH, Brown K, Krishnam MS. Lung cancer staging essentials: the new TNM staging system and potential imaging pitfalls. Radiographics. 2010;30:1163–81.

    Article  PubMed  Google Scholar 

  22. Seol YM, Kwon BR, Song MK, Choi YJ, Shin HJ, Chung JS, et al. Measurement of tumor volume by PET to evaluate prognosis in patients with head and neck cancer treated by chemo-radiation therapy. Acta Oncol. 2010;49:201–8.

    Article  PubMed  CAS  Google Scholar 

  23. Chung HH, Kim JW, Han KH, Eo JS, Kang KW, Park NH, et al. Prognostic value of metabolic tumor volume measured by FDG-PET/CT in patients with cervical cancer. Gynecol Oncol. 2011;120:270–4.

    Article  PubMed  Google Scholar 

  24. Liao S, Penney BC, Zhang H, Suzuki K, Pu Y. Prognostic value of the quantitative metabolic volumetric measurement on F-18 FDG PET/CT in Stage IV nonsurgical small-cell lung cancer. Acad Radiol. 2012;19:69–77.

    Article  PubMed  Google Scholar 

  25. Boellaard R, Krak NC, Hoekstra OS, Lammertsma AA. Effects of noise, image resolution, and ROI definition on the accuracy of standard uptake values: a simulation study. J Nucl Med. 2004;45:1519–27.

    PubMed  Google Scholar 

  26. Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: Evolving Considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50 Suppl 1:122S–50S.

    Article  PubMed  CAS  Google Scholar 

  27. Hyun SH, Choi JY, Shim YM, Kim K, Lee SJ, Cho YS, et al. Prognostic value of metabolic tumor volume measured by F-18 fluorodeoxyglucose positron emission tomography in patients with esophageal carcinoma. Ann Surg Oncol. 2010;17:115–22.

    Article  PubMed  Google Scholar 

  28. Song MK, Chung JS, Shin HJ, Moon JH, Lee JO, Lee HS, et al. Prognostic value of metabolic tumor volume on PET/CT in primary gastrointestinal diffuse large B cell lymphoma. Cancer Sci. 2012;103:477–82.

    Article  PubMed  CAS  Google Scholar 

  29. Tang C, Murphy JD, Khong B, La TH, Kong C, Fischbein NJ, et al. Validation that metabolic tumor volume predicts outcome in head-and-neck cancer. Int J Radiat Oncol Biol Phys. 2012;83:1514–20.

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee-Seung Bom.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoo, S.W., Kim, J., Chong, A. et al. Metabolic Tumor Volume Measured by F-18 FDG PET/CT can Further Stratify the Prognosis of Patients with Stage IV Non-Small Cell Lung Cancer. Nucl Med Mol Imaging 46, 286–293 (2012). https://doi.org/10.1007/s13139-012-0165-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13139-012-0165-5

Keywords

Navigation