Skip to main content

Advertisement

Log in

68Ga-Labeled Radiopharmaceuticals for Positron Emission Tomography

  • Review
  • Published:
Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

68Ga is a promising emerging radionuclide for positron emission tomography (PET). It is produced using a 68Ge/68Ga-generator, and thus, would enable the cyclotron-independent distribution of PET. However, new 68Ga-labeled radiopharmaceuticals that can replace 18F-labeled agents like [18F]fluorodeoxyglucose (FDG) are needed. Most of the 68Ga-labeled derivatives currently used are peptide agents, but the developments of other agents, such as amino acid derivatives, nitroimidazole derivatives, and glycosylated human serum albumin, are being actively pursued in many laboratories. Thus, appearance of new 68Ga-labeled radiopharmaceuticals with high impact are expected in the near future. Here, we present an overview of 68Ga-labeled agents in terms of their clinical significances and relevances to the management of certain tumors, and pertinent pre-clinical developments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Breeman WA, Verbruggen AM. The 68Ge/68Ga generator has high potential, but when can we use 68Ga-labelled tracers in clinical routine? Eur J Nucl Med Mol Imaging. 2007;34:978–81.

    Article  PubMed  Google Scholar 

  2. Ehrhardt GJ, Welch MJ. A new germanium-63/gallium-68 generator. J Nucl Med. 1978;19:925–9.

    CAS  PubMed  Google Scholar 

  3. Zhernosekov KP, Filosofov DV, Baum RP, Aschoff P, Bihl H, Razbash AA, et al. Processing of generator-produced 68Ga for medical application. J Nucl Med. 2007;48:1741–8.

    Article  CAS  PubMed  Google Scholar 

  4. Antunes P, Ginj M, Zhang H, Waser B, Baum RP, Reubi JC, et al. Are radiogallium-labelled DOTA-conjugated somatostatin analogues superior to those labelled with other radiometals? Eur J Nucl Med Mol Imaging. 2007;34:982–93.

    Article  CAS  PubMed  Google Scholar 

  5. Buchmann I, Henze M, Engelbrecht S, Eisenhut M, Runz A, Schafer M, et al. Comparison of 68Ga-DOTATOC PET and 111In-DTPAOC (Octreoscan) SPECT in patients with neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2007;34:1617–26.

    Article  CAS  PubMed  Google Scholar 

  6. Gabriel M, Decristoforo C, Kendler D, Dobrozemsky G, Heute D, Uprimny C, et al. 68Ga-DOTA-Tyr3-octreotide PET in neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and CT. J Nucl Med. 2007;48:508–18.

    Article  CAS  PubMed  Google Scholar 

  7. Ambrosini V, Tomassetti P, Castellucci P, Campana D, Montini G, Rubello D, et al. Comparison between 68Ga-DOTA-NOC and 18F-DOPA PET for the detection of gastro-entero-pancreatic and lung neuro-endocrine tumours. Eur J Nucl Med Mol Imaging. 2008;35:1431–8.

    Article  CAS  PubMed  Google Scholar 

  8. Parker D. Tumour targeting with radiolabelled macrocycle–antibody conjugates. Chem Soc Rev. 1990;19:271–91.

    Article  CAS  Google Scholar 

  9. Harris WR, Pecoraro VL. Thermodynamic binding constants for gallium transferrin. Biochemistry. 1983;22:292–9.

    Article  CAS  PubMed  Google Scholar 

  10. Chong HS, Ma X, Le T, Kwamena B, Milenic DE, Brady ED, et al. Rational design and generation of a bimodal bifunctional ligand for antibody-targeted radiation cancer therapy. J Med Chem. 2008;51:118–25.

    Article  CAS  PubMed  Google Scholar 

  11. Chong HS, Song HA, Ma X, Milenic DE, Brady ED, Lim S, et al. Novel bimodal bifunctional ligands for radioimmunotherapy and targeted MRI. Bioconjug Chem. 2008;19:1439–47.

    Article  CAS  PubMed  Google Scholar 

  12. Hoffend J, Mier W, Schuhmacher J, Schmidt K, Dimitrakopoulou-Strauss A, Strauss LG, et al. Gallium-68-DOTA-albumin as a PET blood-pool marker: experimental evaluation in vivo. Nucl Med Biol. 2005;32:287–92.

    Article  CAS  PubMed  Google Scholar 

  13. Jeong JM, Hong MK, Chang YS, Lee YS, Kim YJ, Cheon GJ, et al. Preparation of a promising angiogenesis PET imaging agent: 68Ga-labeled c(RGDyK)-isothiocyanatobenzyl-1, 4, 7-triazacyclononane-1, 4, 7-triacetic acid and feasibility studies in mice. J Nucl Med. 2008;49:830–6.

    Article  CAS  PubMed  Google Scholar 

  14. Sabatino G, Chinol M, Paganelli G, Papi S, Chelli M, Leone G, et al. A new biotin derivative-DOTA conjugate as a candidate for pretargeted diagnosis and therapy of tumors. J Med Chem. 2003;46:3170–3.

    Article  CAS  PubMed  Google Scholar 

  15. Tanaka K, Masuyama T, Hasegawa K, Tahara T, Mizuma H, Wada Y, et al. A submicrogram-scale protocol for biomolecule-based pet imaging by rapid 6p-azaelectrocyclization: visualization of sialic acid dependent circulatory residence of glycoproteins. Angew Chem Int Ed. 2008;47:102–5.

    Article  CAS  Google Scholar 

  16. Tsang BW, Mathias CJ, Fanwick PE, Green MA. Structure-distribution relationships for metal-labeled myocardial imaging agents: comparison of a series of cationic gallium (III) complexes with hexadentate bis(salicylaldimine) ligands. J Med Chem. 1994;37:4400–6.

    Article  CAS  PubMed  Google Scholar 

  17. Tsang BW, Mathias CJ, Green MA. A gallium-68 radiopharmaceutical that is retained in myocardium: 68Ga[(4, 6-MeO2sal)2BAPEN]+. J Nucl Med. 1993;34:1127–31.

    CAS  PubMed  Google Scholar 

  18. Kung HF, Liu BL, Mankoff D, Kung MP, Billings JJ, Francesconi L, et al. A new myocardial imaging agent: synthesis, characterization, and biodistribution of gallium-68-BAT-TECH. J Nucl Med. 1990;31:1635–40.

    CAS  PubMed  Google Scholar 

  19. Fichna J, Janecka A. Synthesis of target-specific radiolabeled peptides for diagnostic imaging. Bioconjug Chem. 2003;14:3–17.

    Article  CAS  PubMed  Google Scholar 

  20. Janoki G, Harwig J, Chanachai W, Wolf W. 67Ga desferrioxamine–HSA: synthesis of chelon protein conjugates using carbodiimide as a coupling agent. Int J Appl Radiat Isot. 1983;34:871–7.

    Article  CAS  PubMed  Google Scholar 

  21. Koizumi M, Endo K, Kunimatsu M, Sakahara H, Nakashima T, Kawamura Y, et al. Preparation of 67Ga-labeled antibodies using deferoxamine as a bifunctional chelate. An improved method. J Immunol Methods. 1987;104:93–102.

    Article  CAS  PubMed  Google Scholar 

  22. Mathias CJ, Sun YZ, Welch MJ, Connett JM, Philpott GW, Martell AE. N,N'-bis(2-hydroxybenzyl)-1-(4-bromoacetamidobenzyl)-1,2-ethylenediamine-N,N'-diacetic acid: a new bifunctional chelate for radiolabeling antibodies. Bioconjug Chem. 1990;1:204–11.

    Article  CAS  PubMed  Google Scholar 

  23. Broan C, Cox J, Craig A, Kataky R, Parker D, Harrison A, et al. Structure and solution stability of indium and gallium complexes of 1,4,7-triazacyclononanetriacetate and of yttrium complexes of 1,4,7,10-tetraazacyclododecanetetraacetate and related ligands: kinetically stable complexes for use in imaging and radioimmunotherapy. X-ray molecular structure of the indium and gallium complexes of 1,4,7-triazacyclononane-1,4,7-triacetic acid. J Chem Soc Perkin Trans. 1991;2:87–99.

    Google Scholar 

  24. Liu S, Edwards DS. Synthesis and characterization of two 111In-labeled DTPA-peptide conjugates. Bioconjug Chem. 2001;12:630–4.

    Article  CAS  PubMed  Google Scholar 

  25. Chong HS, Garmestani K, Ma D, Milenic DE, Overstreet T, Brechbiel MW. Synthesis and biological evaluation of novel macrocyclic ligands with pendent donor groups as potential yttrium chelators for radioimmunotherapy with improved complex formation kinetics. J Med Chem. 2002;45:3458–64.

    Article  CAS  PubMed  Google Scholar 

  26. Reubi JC, Schaer JC, Markwalder R, Waser B, Horisberger U, Laissue J. Distribution of somatostatin receptors in normal and neoplastic human tissues: recent advances and potential relevance. Yale J Biol Med. 1997;70:471–9.

    CAS  PubMed  Google Scholar 

  27. Reubi JC. Regulatory peptide receptors as molecular targets for cancer diagnosis and therapy. Q J Nucl Med. 1997;41:63–70.

    CAS  PubMed  Google Scholar 

  28. Schonbrunn A. Somatostatin receptors present knowledge and future directions. Ann Oncol. 1999;10:S17–21.

    Article  PubMed  Google Scholar 

  29. Reubi JC, Schar JC, Waser B, Wenger S, Heppeler A, Schmitt JS, et al. Affinity profiles for human somatostatin receptor subtypes SST1-SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use. Eur J Nucl Med. 2000;27:273–82.

    Article  CAS  PubMed  Google Scholar 

  30. Kwekkeboom DJ, Kooij PP, Bakker WH, Macke HR, Krenning EP. Comparison of 111In-DOTA-Tyr3-octreotide and 111In-DTPA-octreotide in the same patients: biodistribution, kinetics, organ and tumor uptake. J Nucl Med. 1999;40:762–7.

    CAS  PubMed  Google Scholar 

  31. Rufini V, Calcagni ML, Baum RP. Imaging of neuroendocrine tumors. Semin Nucl Med. 2006;36:228–47.

    Article  PubMed  Google Scholar 

  32. Smith-Jones PM, Stolz B, Bruns C, Albert R, Reist HW, Fridrich R, et al. Gallium-67/gallium-68-[DFO]-octreotide—a potential radiopharmaceutical for PET imaging of somatostatin receptor-positive tumors: synthesis and radiolabeling in vitro and preliminary in vivo studies. J Nucl Med. 1994;35:317–25.

    CAS  PubMed  Google Scholar 

  33. Breeman WA, de Jong M, Kwekkeboom DJ, Valkema R, Bakker WH, Kooij PP, et al. Somatostatin receptor-mediated imaging and therapy: basic science, current knowledge, limitations and future perspectives. Eur J Nucl Med. 2001;28:1421–9.

    Article  CAS  PubMed  Google Scholar 

  34. Kwekkeboom DJ, Mueller-Brand J, Paganelli G, Anthony LB, Pauwels S, Kvols LK, et al. Overview of results of peptide receptor radionuclide therapy with 3 radiolabeled somatostatin analogs. J Nucl Med. 2005;46 Suppl 1:62S–6S.

    CAS  PubMed  Google Scholar 

  35. Wild D, Macke HR, Waser B, Reubi JC, Ginj M, Rasch H, et al. 68Ga-DOTANOC: a first compound for PET imaging with high affinity for somatostatin receptor subtypes 2 and 5. Eur J Nucl Med Mol Imaging. 2005;32:724.

    Article  PubMed  Google Scholar 

  36. Wild D, Schmitt JS, Ginj M, Macke HR, Bernard BF, Krenning E, et al. DOTA-NOC, a high-affinity ligand of somatostatin receptor subtypes 2, 3 and 5 for labelling with various radiometals. Eur J Nucl Med Mol Imaging. 2003;30:1338–47.

    Article  CAS  PubMed  Google Scholar 

  37. Wei L, Miao Y, Gallazzi F, Quinn TP, Welch MJ, Vavere AL, et al. Gallium-68-labeled DOTA-rhenium-cyclized alpha-melanocyte-stimulating hormone analog for imaging of malignant melanoma. Nucl Med Biol. 2007;34:945–53.

    Article  PubMed  Google Scholar 

  38. Froidevaux S, Calame-Christe M, Schuhmacher J, Tanner H, Saffrich R, Henze M, et al. A gallium-labeled DOTA-alpha-melanocyte- stimulating hormone analog for PET imaging of melanoma metastases. J Nucl Med. 2004;45:116–23.

    CAS  PubMed  Google Scholar 

  39. van Hagen PM, Breeman WA, Reubi JC, Postema PT, van den Anker-Lugtenburg PJ, Kwekkeboom DJ, et al. Visualization of the thymus by substance P receptor scintigraphy in man. Eur J Nucl Med. 1996;23:1508–13.

    Article  PubMed  Google Scholar 

  40. de Visser M, Janssen PJ, Srinivasan A, Reubi JC, Waser B, Erion JL, et al. Stabilised 111In-labelled DTPA- and DOTA-conjugated neurotensin analogues for imaging and therapy of exocrine pancreatic cancer. Eur J Nucl Med Mol Imaging. 2003;30:1134–9.

    Article  PubMed  Google Scholar 

  41. Behr TM, Behe MP. Cholecystokinin-B/Gastrin receptor-targeting peptides for staging and therapy of medullary thyroid cancer and other cholecystokinin-B receptor-expressing malignancies. Semin Nucl Med. 2002;32:97–109.

    Article  PubMed  Google Scholar 

  42. Reubi JC, Wenger S, Schmuckli-Maurer J, Schaer JC, Gugger M. Bombesin receptor subtypes in human cancers: detection with the universal radioligand 125I-[D-TYR(6), beta-ALA(11), PHE(13), NLE(14)] bombesin(6-14). Clin Cancer Res. 2002;8:1139–46.

    CAS  PubMed  Google Scholar 

  43. Zhang H, Schuhmacher J, Waser B, Wild D, Eisenhut M, Reubi JC, et al. DOTA-PESIN, a DOTA-conjugated bombesin derivative designed for the imaging and targeted radionuclide treatment of bombesin receptor-positive tumours. Eur J Nucl Med Mol Imaging. 2007;34:1198–208.

    Article  PubMed  Google Scholar 

  44. Lankinen P, Makinen TJ, Poyhonen TA, Virsu P, Salomaki S, Hakanen AJ, et al. 68Ga-DOTAVAP-P1 PET imaging capable of demonstrating the phase of inflammation in healing bones and the progress of infection in osteomyelitic bones. Eur J Nucl Med Mol Imaging. 2008;35:352–64.

    Article  CAS  PubMed  Google Scholar 

  45. Makinen TJ, Lankinen P, Poyhonen T, Jalava J, Aro HT, Roivainen A. Comparison of 18F-FDG and 68Ga PET imaging in the assessment of experimental osteomyelitis due to Staphylococcus aureus. Eur J Nucl Med Mol Imaging. 2005;32:1259–68.

    Article  PubMed  Google Scholar 

  46. Roivainen A, Tolvanen T, Salomaki S, Lendvai G, Velikyan I, Numminen P, et al. 68Ga-labeled oligonucleotides for in vivo imaging with PET. J Nucl Med. 2004;45:347–55.

    CAS  PubMed  Google Scholar 

  47. Clarke ET, Martell AE. Stabilities of the Fe(Iii), Ga(Iii) and in(Iii) chelates of N,N',N''-triazacyclononanetriacetic acid. Inorg Chim Acta. 1991;181:273–80.

    Article  CAS  Google Scholar 

  48. Clarke ET, Martell AE. Potentiometric and spectrophotometric determination of the stabilities of in(Iii), Ga(Iii) and Fe(Iii) complexes of N,N',N''-tris(3,5-dimethyl-2-hydroxybenzyl)-1,4,7-triazacyclononane. Inorg Chim Acta. 1991;186:103–11.

    Article  CAS  Google Scholar 

  49. Clarke ET, Martell AE. Stabilities of trivalent metal-ion complexes of the tetraacetate derivatives of 12-membered, 13-membered and 14-membered tetraazamacrocycles. Inorg Chim Acta. 1991;190:37–46.

    Article  CAS  Google Scholar 

  50. Shetty D, Jeong JM, Hoigebazar L, Lee YS, Lee DS, Chung JK, et al. (2010) Formation and characterization of gallium(III) complexes with monoamide derivatives of 1,4,7-triazacyclononane-1,4,7-triacetic acid: a pH dependant structural study. Eur J Inorg Chem 2010:In press.

  51. Shetty D, Ju CH, Kim YJ, Lee JY, Lee YS, Lee DS, et al. (2010) Synthesis and evaluation of macrocyclic amino acid derivatives for tumor imaging by gallium-68 positron emission tomography. Bioorg Med Chem 18. doi:10.1016/j.bmc.2010.09.022

  52. Shetty D, Ju CH, Lee YS, Jeong SY, Choi JY, Yang BY, et al. (2010) Synthesis of novel 68Ga labeled amino acid derivatives for positron emission tomography of cancer cells. Nucl Med Biol 37. doi:10.1016/j.nucmedbio.2010.06.003

  53. Ito M, Yang DJ, Mawlawi O, Mendez R, Oh CS, Azhdarinia A, et al. PET and planar imaging of tumor hypoxia with labeled metronidazole. Acad Radiol. 2006;13:598–609.

    Article  PubMed  Google Scholar 

  54. Hoigebazar L, Jeong JM, Choi SY, Choi JY, Shetty D, Lee YS, et al. Synthesis and characterization of nitroimidazole derivatives for 68Ga-labeling and testing in tumor xenografted mice. J Med Chem. 2010;53:6378–85.

    Article  CAS  PubMed  Google Scholar 

  55. Sharma V, Prior JL, Belinsky MG, Kruh GD, Piwnica-Worms D. Characterization of a 67Ga/68Ga radiopharmaceutical for SPECT and PET of MDR1 P-glycoprotein transport activity in vivo: validation in multidrug-resistant tumors and at the blood-brain barrier. J Nucl Med. 2005;46:354–64.

    CAS  PubMed  Google Scholar 

  56. Choi JY, Yoo BC, Kim K, Kim Y, Yang BY, Lee YS, et al. (2010) Development of 68Ga-labeled mannosylated human serum albumin (MSA) as a lymph node imaging agent for positron emission tomography. Nucl Med Biol 37. doi:10.1016/j.nucmedbio.2010.09.010

  57. Yang BY, Jeong JM, Kim YJ, Choi JY, Lee YS, Lee DS, et al. Formulation of 68Ga BAPEN kit for myocardial positron emission tomography imaging and biodistribution study. Nucl Med Biol. 2009;37:149–55.

    Article  PubMed  Google Scholar 

  58. Hofmann M, Maecke H, Borner R, Weckesser E, Schoffski P, Oei L, et al. Biokinetics and imaging with the somatostatin receptor PET radioligand 68Ga-DOTATOC: preliminary data. Eur J Nucl Med. 2001;28:1751–7.

    Article  CAS  PubMed  Google Scholar 

  59. Koukouraki S, Strauss LG, Georgoulias V, Schuhmacher J, Haberkorn U, Karkavitsas N, et al. Evaluation of the pharmacokinetics of 68Ga-DOTATOC in patients with metastatic neuroendocrine tumours scheduled for 90Y-DOTATOC therapy. Eur J Nucl Med Mol Imaging. 2006;33:460–6.

    Article  CAS  PubMed  Google Scholar 

  60. Kowalski J, Henze M, Schuhmacher J, Macke HR, Hofmann M, Haberkorn U. Evaluation of positron emission tomography imaging using [68Ga]-DOTA-D Phe(1)-Tyr(3)-Octreotide in comparison to [111In]-DTPAOC SPECT. First results in patients with neuroendocrine tumors. Mol Imaging Biol. 2003;5:42–8.

    Article  PubMed  Google Scholar 

  61. Win Z, Al-Nahhas A, Towey D, Todd JF, Rubello D, Lewington V, et al. 68Ga-DOTATATE PET in neuroectodermal tumours: first experience. Nucl Med Commun. 2007;28:359–63.

    Article  PubMed  Google Scholar 

  62. Win Z, Rahman L, Murrell J, Todd J, Al-Nahhas A. The possible role of 68Ga-DOTATATE PET in malignant abdominal paraganglioma. Eur J Nucl Med Mol Imaging. 2006;33:506.

    Article  PubMed  Google Scholar 

  63. Henze M, Dimitrakopoulou-Strauss A, Milker-Zabel S, Schuhmacher J, Strauss LG, Doll J, et al. Characterization of 68Ga-DOTA-D-Phe1-Tyr3-octreotide kinetics in patients with meningiomas. J Nucl Med. 2005;46:763–9.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Min Jeong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shetty, D., Lee, YS. & Jeong, J.M. 68Ga-Labeled Radiopharmaceuticals for Positron Emission Tomography. Nucl Med Mol Imaging 44, 233–240 (2010). https://doi.org/10.1007/s13139-010-0056-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13139-010-0056-6

Keywords

Navigation