Skip to main content
Log in

Recent Trends in the Nucleophilic [18F]-radiolabeling Method with No-carrier-added [18F]fluoride

  • Review Article
  • Published:
Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Noninvasive imaging in living subjects with positron emission tomography (PET) provides early detection of diseases in humans. For this application, it is necessary to prepare specific molecular imaging probes labeled with positron-emitting radioisotopes such as fluorine-18 for obtaining high-quality PET imaging. In this review, we describe recent trends in the F-18 radiolabeling method for the introduction of no-carrier-added fluorine-18, which was obtained from an 18O(p,n)18F reaction, into a specific molecular site, which in turn is intended to serve as an imaging agent for PET study. These labeling protocols are based on ionic liquid media 18F radiofluorination in the presence of some water, enzymatic 18F fluorination using fluorinase in water solution, non-polar protic alcohol media 18F radiofluorination and its mechanism, and nucleophilic 18F fluorination of an aromatic iodonium salt precursor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kilbourn MR, Jarabek PA, Welch MJ (1985) An improved [18O]water target for [18F]fluoride production. Int J Appl Radiat Isot 36:327–328

    Article  CAS  PubMed  Google Scholar 

  2. Chi DY (2003) The development of radiopharmaceuticals for human body imaging. J Korean Ind Eng Chem 14:253–262

    CAS  Google Scholar 

  3. Bolton R (2002) Radiohalogen incorporation into organic systems. J Labelled Compd Radiopharm 45:485–528

    Article  CAS  Google Scholar 

  4. Gerstenberger MRC, Haas A (1981) Methods of fluorination in organic chemistry. Angew Chem Int Ed Engl 20:647–667

    Article  Google Scholar 

  5. Mascaretti OA (1993) Modern methods for the monofluorination of aliphatic organic compounds. Aldrichimica Acta 26:47–58

    CAS  Google Scholar 

  6. Kilbourn MR (1990) Nucl. Sci. Series, NAS-NS3203. National Academy Press, Washington DC

    Google Scholar 

  7. Coenen HH (1989) Synthesis and application of isotopically labeled compounds. Elsevier, Amsterdam, pp 433–448

    Google Scholar 

  8. Chi DY, Kilbourn MR, Katzenellenbogen JA, Welch MJ (1987) A rapid and efficient method for the fluoroalkylation of amines and amides. Development of a method suitable for incoration of the short-lived positron emitting radionuclide fluorine-18. J Org Chem 52:658–664

    Article  CAS  Google Scholar 

  9. Welton T (1999) Room-temperature ionic liquids, solvents for synthesis and catalysis. Chem Res 99:2071–2083

    CAS  Google Scholar 

  10. Holbrey JD, Seddon KR. (1999) The phase behaviour of 1-alkyl-3-methylimidazolium tetrafluoroborates; ionic liquids and ionic liquids crystals. J Chem Soc Dalton Trans 2133-2139

  11. Wasserscheid P, Keim W (2000) Ionic liquids–new “solution” for transition metal catalysis. Angew Chem Int Ed Engl 39:3772–3789

    CAS  PubMed  Google Scholar 

  12. Kim DW, Choe YS, Chi DY (2003) A new nucleophilic fluorine-18 labeling method for aliphatic mesylates: reaction in ionic liquids shows tolerance for water. Nucl Med Biol 30:345–350

    Article  CAS  PubMed  Google Scholar 

  13. Kim DW, Song CE, Chi DY (2002) New method of fluorination using potassium fluoride in ionic liquid: significantly enhanced reactivity of fluoride and improved selectivity. J Am Chem Soc 121:10278–10279

    Article  Google Scholar 

  14. Kim HW, Jeong JM, Lee YS, Chi DY, Chung KH, Lee DS et al (2004) Rapid synthesis of [18F]FDG without an evaporation step using an ionic liquid. Appl Radiat Isot 61:1241–1246

    Article  CAS  PubMed  Google Scholar 

  15. Kim DW, Chi DY (2004) Polymer-supported ionic liquids: imidazolium salts as catalysts for nucleophilic substitution reactions including fluorinations. Angew Chem Int Ed 43:483–485

    Article  CAS  Google Scholar 

  16. Kim DW, Hong DJ, Jang KS, Song CE, Chi DY (2006) Structural modification of polymer-supported ionic liquids: ionic resins as catalysts for nucleophilic substitution reactions. Adv Synth Catal 348:1719–1727

    Article  CAS  Google Scholar 

  17. O’Hagan D, Schaffrath C, Cobb SL, Hamilton JTG, Murphy CD (2002) Biochemistry: biosynthesis of an organofluorine molecule. Nature 416:279

    Article  PubMed  Google Scholar 

  18. Schaffrath C, Deng H, O’Hagan D (2003) Isolation and characterization of 5′-fluorodeoxyadenosine synthase, a fluorination enzyme from Streptomyces cattleya. FEBS Lett 547:111–114

    Article  CAS  PubMed  Google Scholar 

  19. Martarello L, Schaffrath C, Deng H, Gee AD, Lockhart A, O’Hagan D (2003) The first enzymatic method for C-18F bond formation: the synthesis of 5′-[18F]-fluoro-5′-deoxyadenosine for imaging with PET. J Label Compd Radiopharm 46:1181–1189

    Article  CAS  Google Scholar 

  20. Deng H, Cobb SL, Gee AD, Lockhart A, Martarello L, McGlinchey RP et al (2006) Fluorinase mediated C-18F bond formation, an enzymatic tool for PET labelling. Chem Commun 652–654

  21. Winkler M, Domarkas J, Schweiger LF, O’Hagan D (2008) Fluorinase-coupled base swaps: synthesis of [18F]-5′-deoxy-5′-fluorouridines. Angew Chem Int Ed 47:10141–10143

    Article  CAS  Google Scholar 

  22. Reichardt C (2002) Solvents and solvent effects in organic chemistry. Wiley-VCH, New York

    Book  Google Scholar 

  23. Kim DW, Ahn DS, Oh YH, Lee S, Kil HS, Oh SJ et al (2006) A new class of SN2 reactions catalyzed by protic solvents: facile fluorination for isotopic labeling of diagnostic molecules. J Am Chem Soc 128:16393–16397

    Google Scholar 

  24. Kim DW, Jeong HJ, Lim ST, Sohn MH, Katzenellenbogen JA, Chi DY (2008) Facile nucleophilic fluorination reaction using tert-alcohols as a reaction medium: significantly enhanced reactivity of alkali metal fluorides and improved selectivity. J Org Chem 73:957–962

    Article  CAS  PubMed  Google Scholar 

  25. Kim DW, Jeong HJ, Lim ST, Sohn MH, Chi DY (2008) Facile nucleophilic fluorination by synergistic effect between polymer-supported ionic liquid catalyst and tert-alcohol. Tetrahedron 64:4209–4214

    Article  CAS  Google Scholar 

  26. Chaly T, Dhawan V, Kazumata K, Antonini A, Margouleff C, Dahl JR et al (1996) Radiosynthesis of [18F]N-3-fluoropropyl-2-beta-carbomethoxy-3-beta-(4-iodophenyl)nortropane and the first human study with positron emission tomography. Nucl Med Biol 23:999–1004

    Article  CAS  PubMed  Google Scholar 

  27. Oh SJ, Mosdzianowski C, Chi DY, Kim JY, Kang SH, Ryu JS et al (2004) Fully automated synthesis system of 3′-deoxy-3′-[18F]fluorothymidine. Nucl Med Biol 31:803–809

    Article  CAS  PubMed  Google Scholar 

  28. Oh SJ, Chi DY, Mosdzianowski C, Kim JY, Kil HS, Kang SH et al (2005) Fully automated synthesis of [18F]fluoromisonidazole using a conventional [18F]FDG module. Nucl Med Biol 32:899–905

    Article  CAS  PubMed  Google Scholar 

  29. Kim DW, Jeong HJ, Lim ST, Sohn MH (2008) Tetrabutylammonium tetra(tert-butyl alcohol)-coordinated fluoride as a facile fluoride source. Angew Chem Int Ed Engl 47:8404–8406

    Article  CAS  PubMed  Google Scholar 

  30. Pilcher AS, Ammon HL, DeShong P (1995) Utilization of tetrabutylammonium triphenylsilyldifluoride as a fluoride source for nucleophilic fluorination. J Am Chem Soc 117:5166–5167

    Article  CAS  Google Scholar 

  31. Sun H, DiMagno SG (2005) Anhydrous tetrabutylammonium fluoride. J Am Chem Soc 127:2050–2051

    Article  CAS  PubMed  Google Scholar 

  32. Namavari M, Bishop A, Satyamurthy N, Bida G, Barrio JR (1992) Regioselective radiofluorodestannylation with [18F]F2 and [18F]CH3COOF; a high yield synthesis of 6-[18F]fluoro-L-dopa. Appl Radiat Isot 43:989–996

    Article  CAS  Google Scholar 

  33. Hamacher K, Hamkens W (1995) Remote controlled one-step production of 18F labeled butyrophenone neuroleptics exemplified by the synthesis of n.c.a. [18F]N-methylspiperone. Appl Radiat Isot 46:911–916

    Article  CAS  Google Scholar 

  34. Katsifis A, Hamacher K, Schnitter J, Stocklin G (1993) Synthesis of fluorine-18-labelled 5- and 6-fluoro-2-pyridinamine. Appl Radiat Isot 44:1015–1020

    Article  CAS  Google Scholar 

  35. Hess E, Sichler S, Kluge A, Coenen HH (2002) Synthesis of 2-[18F]fluoro-L-tyrosine via regiospecific fluoro-de-stannylation. Appl Radiat Isot 57:185–191

    Article  CAS  PubMed  Google Scholar 

  36. Pike VW, Aigbirhio FI (1995) Reactions of cyclotron-produced [18F]fluoride with diaryliodonium salts-a novel single-step route to no-carrier-added [18F]fluoroarenes. J Chem Soc Chem Commun 2215–2216

  37. Shah A, Pike VW, Widdowson DA (1998) The synthesis of [18F]fluoroarenes from the reaction of cyclotron-produced [18F]fluoride ion with diaryliodonium salts. J Chem Soc Perkin Trans 1:2043–2046

    Article  Google Scholar 

  38. Ross TL, Ermert J, Hocke C, Coenen HH (2007) Nucleophilic 18F-fluorination of heteroaromatic iodonium salts with no-carrier-added [18F]fluoride. J Am Chem Soc 129:8018–8025

    Article  CAS  PubMed  Google Scholar 

  39. Lee BC, Lee KC, Lee H, Mach RH, Katzenellenbogen JA (2007) Strategies for the labeling of halogen-substituted peroxisome proliferator-activated receptor gamma ligands: potential positron emission tomography and single photon emission computed tomography imaging agents. Bioconjugate Chem 18:514–523

    Article  CAS  Google Scholar 

  40. Lee BC, Dence CS, Zhou H, Parent EE, Welch MJ, Katzenellenbogen JA (2009) Fluorine-18 labeling and biodistribution studies on peroxisome proliferator-activated receptor-gamma (PPARg) ligands: potential positron emission tomography (PET) imaging agents. Nucl Med Biol 36:147–153

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by Nuclear Research and Development Program of the Korea Science and Engineering Foundation (KOSEF) grant funded by the Korean government (MEST) (grant code: 2009-0078422 and 2009-0062472 to D.W.K). We also thank Dr. Vinod H. Jadhav for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Wook Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, D.W., Jeong, HJ., Lim, S.T. et al. Recent Trends in the Nucleophilic [18F]-radiolabeling Method with No-carrier-added [18F]fluoride. Nucl Med Mol Imaging 44, 25–32 (2010). https://doi.org/10.1007/s13139-009-0008-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13139-009-0008-1

Keywords

Navigation