Skip to main content

Advertisement

Log in

Validity of Bone Marrow Stromal Cell Expansion by Animal Serum-Free Medium for Cell Transplantation Therapy of Cerebral Infarct in Rats—A Serial MRI Study

  • Cell-based Therapies for Stroke
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

This study was aimed to test the hypothesis that human bone marrow stromal cells (hBMSC) expanded in fetal calf serum (FCS)-free, platelet lysate (PL)-containing medium would retain their capacity of migration, survival, and neural differentiation when transplanted into the infarct brain, using serial in vivo magnetic resonance imaging (MRI). Cell growth kinetic analysis revealed that hBMSC maintain their proliferative activity when cultured either in conventional FCS-containing medium or FCS-free, PL-containing medium. Subsequently, hBMSC were labeled with a superparamagnetic iron oxide agent and were stereotactically transplanted into the ipsilateral striatum of rats at 7 days after permanent middle cerebral artery occlusion. Serial MRI performed over 8 weeks revealed that they retain their migratory capacity towards the cerebral infarct. Moreover, double fluorescence immunohistochemistry also revealed that they preserve their capacity of differentiation into the neural cells in the peri-infarct area. The hBMSC expanded in the FCS-free, PL-containing medium retain their capacity of migration, survival, and differentiation when stereotactically transplanted into the infarct brain. The present findings strongly suggest the clinical utility of PL as a substitute to expand autologous hBMSC for cerebral infarct in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hoehn M, Kustermann E, Blunk J, Wiedermann D, Trapp T, Wecker S, et al. Monitoring of implanted stem cell migration in vivo: a highly resolved in vivo magnetic resonance imaging investigation of experimental stroke in rat. Proc Natl Acad Sci USA. 2002;99:16267–72.

    Article  PubMed  CAS  Google Scholar 

  2. Kawai H, Yamashita T, Ohta Y, Deguchi K, Nagotani S, Zhang X, et al. Tridermal tumorigenesis of induced pluripotent stem cells transplanted in ischemic brain. J Cereb Blood Flow Metab. 2010;30:1487–93.

    Article  PubMed  Google Scholar 

  3. Daadi MM, Lee SH, Arac A, Grueter BA, Bhatnagar R, Maag AL, et al. Functional engraftment of the medial ganglionic eminence cells in experimental stroke model. Cell Transplant. 2009;18:815–26.

    Article  PubMed  Google Scholar 

  4. Veizovic T, Beech JS, Stroemer RP, Watson WP, Hodges H. Resolution of stroke deficits following contralateral grafts of conditionally immortal neuroepithelial stem cells. Stroke. 2001;32:1012–9.

    Article  PubMed  CAS  Google Scholar 

  5. Iihoshi S, Honmou O, Houkin K, Hashi K, Kocsis JD. A therapeutic window for intravenous administration of autologous bone marrow after cerebral ischemia in adult rats. Brain Res. 2004;1007:1–9.

    Article  PubMed  CAS  Google Scholar 

  6. Chen J, Li Y, Wang L, Lu M, Zhang X, Chopp M. Therapeutic benefit of intracerebral transplantation of bone marrow stromal cells after cerebral ischemia in rats. J Neurol Sci. 2001;189:49–57.

    Article  PubMed  CAS  Google Scholar 

  7. Hokari M, Kuroda S, Shichinohe H, Yano S, Hida K, Iwasaki Y. Bone marrow stromal cells protect and repair damaged neurons through multiple mechanisms. J Neurosci Res. 2008;86:1024–35.

    Article  PubMed  CAS  Google Scholar 

  8. Lee JB, Kuroda S, Shichinohe H, Ikeda J, Seki T, Hida K, et al. Migration and differentiation of nuclear fluorescence-labeled bone marrow stromal cells after transplantation into cerebral infarct and spinal cord injury in mice. Neuropathology. 2003;23:169–80.

    Article  PubMed  Google Scholar 

  9. Shichinohe H, Kuroda S, Lee JB, Nishimura G, Yano S, Seki T, et al. In vivo tracking of bone marrow stromal cells transplanted into mice cerebral infarct by fluorescence optical imaging. Brain Res Brain Res Protoc. 2004;13:166–75.

    Article  PubMed  Google Scholar 

  10. Shichinohe H, Kuroda S, Yano S, Hida K, Iwasaki Y. Role of SDF-1/CXCR4 system in survival and migration of bone marrow stromal cells after transplantation into mice cerebral infarct. Brain Res. 2007;1183:138–47.

    Article  PubMed  CAS  Google Scholar 

  11. Shichinohe H, Kuroda S, Yano S, Ohnishi T, Tamagami H, Hida K, et al. Improved expression of gamma-aminobutyric acid receptor in mice with cerebral infarct and transplanted bone marrow stromal cells: an autoradiographic and histologic analysis. J Nucl Med. 2006;47:486–91.

    PubMed  CAS  Google Scholar 

  12. Bang OY, Lee JS, Lee PH, Lee G. Autologous mesenchymal stem cell transplantation in stroke patients. Ann Neurol. 2005;57:874–82.

    Article  PubMed  Google Scholar 

  13. Mazzini L, Ferrero I, Luparello V, Rustichelli D, Gunetti M, Mareschi K, et al. Mesenchymal stem cell transplantation in amyotrophic lateral sclerosis: a phase I clinical trial. Exp Neurol. 2010;223:229–37.

    Article  PubMed  CAS  Google Scholar 

  14. Pal R, Venkataramana NK, Bansal A, Balaraju S, Jan M, Chandra R, et al. Ex vivo-expanded autologous bone marrow-derived mesenchymal stromal cells in human spinal cord injury/paraplegia: a pilot clinical study. Cytotherapy. 2009;11:897–911.

    Article  PubMed  CAS  Google Scholar 

  15. Saito F, Nakatani T, Iwase M, Maeda Y, Hirakawa A, Murao Y, et al. Spinal cord injury treatment with intrathecal autologous bone marrow stromal cell transplantation: the first clinical trial case report. J Trauma. 2008;64:53–9.

    Article  PubMed  Google Scholar 

  16. Zhang ZX, Guan LX, Zhang K, Zhang Q, Dai LJ. A combined procedure to deliver autologous mesenchymal stromal cells to patients with traumatic brain injury. Cytotherapy. 2008;10:134–9.

    Article  PubMed  CAS  Google Scholar 

  17. Ng F, Boucher S, Koh S, Sastry KS, Chase L, Lakshmipathy U, et al. PDGF, TGF-beta, and FGF signaling is important for differentiation and growth of mesenchymal stem cells (MSCs): transcriptional profiling can identify markers and signaling pathways important in differentiation of MSCs into adipogenic, chondrogenic, and osteogenic lineages. Blood. 2008;112:295–307.

    Article  PubMed  CAS  Google Scholar 

  18. Doucet C, Ernou I, Zhang Y, Llense JR, Begot L, Holy X, et al. Platelet lysates promote mesenchymal stem cell expansion: a safety substitute for animal serum in cell-based therapy applications. J Cell Physiol. 2005;205:228–36.

    Article  PubMed  CAS  Google Scholar 

  19. Smith PG. The epidemics of bovine spongiform encephalopathy and variant Creutzfeldt-Jakob disease: current status and future prospects. Bull World Health Organ. 2003;81:123–30.

    PubMed  Google Scholar 

  20. Bernardo ME, Avanzini MA, Perotti C, Cometa AM, Moretta A, Lenta E, et al. Optimization of in vitro expansion of human multipotent mesenchymal stromal cells for cell-therapy approaches: further insights in the search for a fetal calf serum substitute. J Cell Physiol. 2007;211:121–30.

    Article  PubMed  CAS  Google Scholar 

  21. Lange C, Cakiroglu F, Spiess AN, Cappallo-Obermann H, Dierlamm J, Zander AR. Accelerated and safe expansion of human mesenchymal stromal cells in animal serum-free medium for transplantation and regenerative medicine. J Cell Physiol. 2007;213:18–26.

    Article  PubMed  CAS  Google Scholar 

  22. Schallmoser K, Rohde E, Bartmann C, Obenauf AC, Reinisch A, Strunk D. Platelet-derived growth factors for GMP-compliant propagation of mesenchymal stromal cells. Biomed Mater Eng. 2009;19:271–6.

    PubMed  Google Scholar 

  23. von Bonin M, Stolzel F, Goedecke A, Richter K, Wuschek N, Holig K, et al. Treatment of refractory acute GVHD with third-party MSC expanded in platelet lysate-containing medium. Bone Marrow Transplant. 2009;43:245–51.

    Article  Google Scholar 

  24. The STEPS Participants. Stem Cell Therapies as an Emerging Paradigm in Stroke (STEPS): bridging basic and clinical science for cellular and neurogenic factor therapy in treating stroke. Stroke. 2009;40:510–5.

    Article  Google Scholar 

  25. Chinen LY, Hsiao JK, Hsu SC, Yao M, Lu CW, Liu HM, et al. In vivo magnetic resonance imaging of cell tropism, trafficking mechanism, and therapeutic impact of human mesenchymal stem cells in a murine glioma model. Biomaterials. 2011;32:3275–84.

    Article  Google Scholar 

  26. Kim D, Chun BG, Kim YK, Lee YH, Park CS, Jeon I, et al. In vivo tracking of human mesenchymal stem cells in experimental stroke. Cell Transplant. 2008;16:1007–12.

    Article  PubMed  Google Scholar 

  27. Shyu WC, Chen CP, Lin SZ, Lee YJ, Li H. Efficient tracking of non-iron-labeled mesenchymal stem cells with serial MRI in chronic stroke rats. Stroke. 2007;32:367–74.

    Article  Google Scholar 

  28. Zhang ZG, Jiang Q, Zhang R, Zhang L, Wang L, Arniego P, et al. Magnetic resonance imaging and neurosphere therapy of stroke in rat. Ann Neurol. 2003;53:259–63.

    Article  PubMed  Google Scholar 

  29. Yano S, Kuroda S, Shichinohe H, Hida K, Iwasaki Y. Do bone marrow stromal cells proliferate after transplantation into mice cerebral infarct?—a double labeling study. Brain Res. 2005;1065:60–7.

    Article  PubMed  CAS  Google Scholar 

  30. Chen ST, Hsu CY, Hogan EL, Maricq H, Balentine JD. A model of focal ischemic stroke in the rat: reproducible extensive cortical infarction. Stroke. 1986;17:738–43.

    Article  PubMed  CAS  Google Scholar 

  31. Bederson JB, Pitts LH, Tsuji M, Nishimura MC, Davis RL, Bartkowski H. Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination. Stroke. 1986;17:472–6.

    Article  PubMed  CAS  Google Scholar 

  32. Sugiyama T, Kuroda S, Takeda Y, Nishio M, Ito M, Shichinohe H, et al. Therapeutic impact of human bone marrow stromal cells (hBMSC) expanded by animal serum-free medium for cerebral infarct in rats. Neurosurgery. 2011;in press.

  33. Li Y, Chen J, Chen XG, Wang L, Gautam SC, Xu YX, et al. Human marrow stromal cell therapy for stroke in rat: neurotrophins and functional recovery. Neurology. 2002;59:514–23.

    PubMed  CAS  Google Scholar 

  34. Seyfried D, Ding J, Han Y, Li Y, Chen J, Chopp M. Effects of intravenous administration of human bone marrow stromal cells after intracerebral hemorrhage in rats. J Neurosurg. 2006;104:313–8.

    Article  PubMed  Google Scholar 

  35. Sotiropoulou PA, Perez SA, Salagianni M, Baxevanis CN, Papamichail M. Characterization of the optimal culture conditions for clinical scale production of human mesenchymal stem cells. Stem Cells. 2006;24:462–71.

    Article  PubMed  Google Scholar 

  36. Stute N, Holtz K, Bubenheim M, Lange C, Blake F, Zander AR. Autologous serum for isolation and expansion of human mesenchymal stem cells for clinical use. Exp Hematol. 2004;32:1212–25.

    Article  PubMed  CAS  Google Scholar 

  37. Chachques JC, Herreros J, Trainini J, Juffe A, Rendal E, Prosper F, et al. Autologous human serum for cell culture avoids the implantation of cardioverter-defibrillators in cellular cardiomyoplasty. Int J Cardiol. 2004;95 Suppl 1:S29–33.

    Article  PubMed  Google Scholar 

  38. Meuleman N, Tondreau T, Delforge A, Dejeneffe M, Massy M, Libertalis M, et al. Human marrow mesenchymal stem cell culture: serum-free medium allows better expansion than classical alpha-MEM medium. Eur J Haematol. 2006;76:309–16.

    Article  PubMed  Google Scholar 

  39. Shahdadfar A, Fronsdal K, Haug T, Reinholt FP, Brinchmann JE. In vitro expansion of human mesenchymal stem cells: choice of serum is a determinant of cell proliferation, differentiation, gene expression, and transcriptome stability. Stem Cells. 2005;23:1357–66.

    Article  PubMed  CAS  Google Scholar 

  40. Kim D, Hong KS, Song J. The present status of cell tracking methods in animal models using magnetic resonance imaging technology. Mol Cells. 2007;23:132–7.

    PubMed  CAS  Google Scholar 

  41. Modo M, Hoehn M, Bulte JW. Cellular MR imaging. Mol Imaging. 2005;4:143–64.

    PubMed  Google Scholar 

  42. Bulte JW. In vivo MRI cell tracking: clinical studies. AJR Am J Roentgenol. 2009;193:314–25.

    Article  PubMed  Google Scholar 

  43. Weinstein JS, Varallyay CG, Dosa E, Gahramanov S, Hamilton B, Rooney WD, et al. Superparamagnetic iron oxide nanoparticles: diagnostic magnetic resonance imaging and potential therapeutic applications in neurooncology and central nervous system inflammatory pathologies, a review. J Cereb Blood Flow Metab. 2010;30:15–35.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant-in-aid from the Ministry of Education, Science and Culture of Japan (no. 20591701, no. 20390377, and no. 21390400). The authors sincerely thank Yumiko Shinohe and Eiichi Yamada for their technical assistance.

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Kuroda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ito, M., Kuroda, S., Sugiyama, T. et al. Validity of Bone Marrow Stromal Cell Expansion by Animal Serum-Free Medium for Cell Transplantation Therapy of Cerebral Infarct in Rats—A Serial MRI Study. Transl. Stroke Res. 2, 294–306 (2011). https://doi.org/10.1007/s12975-011-0098-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-011-0098-9

Keywords

Navigation