Skip to main content
Log in

State of the Art in Cardiac Hybrid Technology: PET/MR

  • Cardiac Nuclear Imaging (A Cuocolo, Section Editor)
  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

Simultaneous PET/MRI is an emerging technique combining two powerful imaging modalities in a single device. The wide variety of available tracers for perfusion and metabolic studies and the high sensitivity of positron emission tomography (PET) combined with the high spatial resolution and soft tissue contrast of magnetic resonance imaging (MRI) in depicting cardiac morphology and function as well as MRI’s absence of ionizing radiation makes PET/MRI very attractive to radiologists and clinicians. Nevertheless, PET/MR scientific and clinical promise is to be considered in the context of numerous technical challenges that hinder its use in the clinical setting. For example, in order for a PET system to work correctly within an MR field, major changes are required to the photon detection chain such as the elimination of photomultiplier tubes, etc. Another significant limitation of PET/MRI is the lack of an electron density map (as is the case with PET-CT) that can be readily obtained from MRI (the latter measures proton not electron density) and used to correct PET data for attenuation. Moreover, as with PET-CT, cardiac and respiratory motions cause image degradations that affect image quality and accuracy both in static and dynamic PET imaging. As a result, overcoming these (and other) technical limitations is a very active area of research both in academic institutions as well as industry. In this paper, we review recent literature on cardiac PET/MRI, present the state-of-the-art of this technology, and explore promising preclinical and clinical cardiac applications where PET/MRI could play a substantial role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Nesto RW, Kowalchuk GJ. The ischemic cascade: temporal sequence of hemodynamic, electrocardiographic and symptomatic expressions of ischemia. Am J Cardiol. 1987;59(7):23C–30.

    Article  PubMed  CAS  Google Scholar 

  2. Loghin C, Sdringola S, Gould KL. Common artifacts in PET myocardial perfusion images due to attenuation–emission misregistration: clinical significance, causes, and solutions. J Nucl Med. 2004;45(6):1029–39.

    PubMed  Google Scholar 

  3. Di Carli MF, Dorbala S, Hachamovitch R. Integrated cardiac PET-CT for the diagnosis and management of CAD. J Nucl Cardiol. 2006;13(2):139–44.

    Article  PubMed  Google Scholar 

  4. Dou J et al. Cardiac diffusion MRI without motion effects. Magn Reson Med. 2002;48(1):105–14.

    Article  PubMed  Google Scholar 

  5. Miller SW, Boxt L, Abbara S. The requisites—cardiac imaging. 3rd ed. Elseviers Mosby; 2009. ISBN-13: 978-0323055277.

  6. • Petibon Y et al. Cardiac motion compensation and resolution modeling in simultaneous PET-MR: a cardiac lesion detection study. Phys Med Biol. 2013;58(7):2085–102. Good paper about a novel method for cardiac motion compensation in a list-mode iterative reconstruction framework in simultaneous PET-MR.

    Article  PubMed  CAS  Google Scholar 

  7. •• Rischpler C et al. Hybrid PET/MR imaging of the heart: potential, initial experiences, and future prospects. J Nucl Med. 2013;54(3):402–15. Great review of hybrid PET/MRI application in heart disease.

    Article  PubMed  CAS  Google Scholar 

  8. Koepfli P et al. CT attenuation correction for myocardial perfusion quantification using a PET/CT hybrid scanner. J Nucl Med. 2004;45(4):537–42.

    PubMed  Google Scholar 

  9. Zhang H et al. Accurate myocardial T1 measurements: toward quantification of myocardial blood flow with arterial spin labeling. Magn Reson Med. 2005;53(5):1135–42.

    Article  PubMed  Google Scholar 

  10. Delso G, Ziegler S. PET/MRI system design. Eur J Nucl Med Mol Imaging. 2009;36 Suppl 1:S86–92.

    Article  PubMed  Google Scholar 

  11. Zaidi H et al. Design and performance evaluation of a whole-body Ingenuity TF PET-MRI system. Phys Med Biol. 2011;56(10):3091–106.

    Article  PubMed  CAS  Google Scholar 

  12. Veit-Haibach P et al. PET-MR imaging using a tri-modality PET/CT-MR system with a dedicated shuttle in clinical routine. MAGMA. 2013;26(1):25–35.

    Article  PubMed  Google Scholar 

  13. Delso G et al. Performance measurements of the Siemens mMR integrated whole-body PET/MR scanner. J Nucl Med. 2011;52(12):1914–22.

    Article  PubMed  Google Scholar 

  14. Judenhofer MS, Cherry SR. Applications for preclinical PET/MRI. Semin Nucl Med. 2013;43(1):19–29.

    Article  PubMed  Google Scholar 

  15. Judenhofer MS et al. Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nat Med. 2008;14(4):459–65.

    Article  PubMed  CAS  Google Scholar 

  16. Prince JL, McVeigh ER. Motion estimation from tagged MR image sequences. IEEE Trans Med Imaging. 1992;11(2):238–49.

    Article  PubMed  CAS  Google Scholar 

  17. Chun SY et al. MRI-based nonrigid motion correction in simultaneous PET/MRI. J Nucl Med. 2012;53(8):1284–91.

    Article  PubMed  Google Scholar 

  18. Stickel JR, Cherry SR. High-resolution PET detector design: modelling components of intrinsic spatial resolution. Phys Med Biol. 2005;50(2):179–95.

    Article  PubMed  Google Scholar 

  19. Sureau FC et al. Impact of image-space resolution modeling for studies with the high-resolution research tomograph. J Nucl Med. 2008;49(6):1000–8.

    Article  PubMed  Google Scholar 

  20. Wiant D et al. Evaluation of the spatial dependence of the point spread function in 2D PET image reconstruction using LOR-OSEM. Med Phys. 2010;37(3):1169–82.

    Article  PubMed  CAS  Google Scholar 

  21. Alessio AM et al. Application and evaluation of a measured spatially variant system model for PET image reconstruction. IEEE Trans Med Imaging. 2010;29(3):938–49.

    Article  PubMed  Google Scholar 

  22. Boucher L et al. Respiratory gating for 3-dimensional PET of the thorax: feasibility and initial results. J Nucl Med. 2004;45(2):214–9.

    PubMed  Google Scholar 

  23. Blume M, Navab N, Rafecas M. Joint image and motion reconstruction for PET using a B-spline motion model. Phys Med Biol. 2012;57(24):8249–70.

    Article  PubMed  Google Scholar 

  24. Buscher K et al. Isochronous assessment of cardiac metabolism and function in mice using hybrid PET/MRI. J Nucl Med. 2010;51(8):1277–84.

    Article  PubMed  Google Scholar 

  25. Lee WW et al. PET/MRI of inflammation in myocardial infarction. J Am Coll Cardiol. 2012;59(2):153–63.

    Article  PubMed  CAS  Google Scholar 

  26. Ouyang J, Li Q, El Fakhri G. Magnetic resonance-based motion correction for positron emission tomography imaging. Semin Nucl Med. 2013;43(1):60–7.

    Article  PubMed  Google Scholar 

  27. Higuchi T et al. Targeting of endothelin receptors in the healthy and infarcted rat heart using the PET tracer 18F-FBzBMS. J Nucl Med. 2013;54(2):277–82.

    Article  PubMed  Google Scholar 

  28. Majmudar MD, Nahrendorf M. Cardiovascular molecular imaging: the road ahead. J Nucl Med. 2012;53(5):673–6.

    Article  PubMed  Google Scholar 

  29. Majmudar MD et al. Polymeric nanoparticle PET/MR imaging allows macrophage detection in atherosclerotic plaques. Circ Res. 2013;112(5):755–61.

    Article  PubMed  CAS  Google Scholar 

  30. Parker MW et al. Diagnostic accuracy of cardiac positron emission tomography versus single photon emission computed tomography for coronary artery disease: a bivariate meta-analysis. Circ Cardiovasc Imaging. 2012;5(6):700–7.

    Article  PubMed  Google Scholar 

  31. de Jong MC et al. Diagnostic performance of stress myocardial perfusion imaging for coronary artery disease: a systematic review and meta-analysis. Eur Radiol. 2012;22(9):1881–95.

    Article  PubMed  Google Scholar 

  32. Koller A, Balasko M, Bagi Z. Endothelial regulation of coronary microcirculation in health and cardiometabolic diseases. Intern Emerg Med. 2013;8 Suppl 1:51–4.

    Article  Google Scholar 

  33. Rischpler C et al. Advances in PET myocardial perfusion imaging: F-18 labeled tracers. Ann Nucl Med. 2012;26(1):1–6.

    Article  PubMed  Google Scholar 

  34. Berman DS, Germano G, Slomka PJ. Improvement in PET myocardial perfusion image quality and quantification with flurpiridaz F 18. J Nucl Cardiol. 2012;19 Suppl 1:S38–45.

    Article  PubMed  Google Scholar 

  35. Dweck MR et al. Coronary arterial 18F-sodium fluoride uptake: a novel marker of plaque biology. J Am Coll Cardiol. 2012;59(17):1539–48.

    Article  PubMed  CAS  Google Scholar 

  36. Dweck MR et al. Assessment of valvular calcification and inflammation by positron emission tomography in patients with aortic stenosis. Circulation. 2012;125(1):76–86.

    Article  PubMed  CAS  Google Scholar 

  37. Ratib O, Nkoulou R. Cardiovascular clinical applications of PET/MRI. Clin Transl Imaging. 2013. doi:10.1007/s40336-013-0008-0.

    Google Scholar 

  38. O’Meara C, Menezes LJ, White SK, Elliott P. Inital experience of imaging cardiac sarcoidosis using hybrid PET-MR—a technologist's case study. J Cardiovasc Magn Reson. 2013. doi:10.1186/1532-429X-15-S1-T1.

    Google Scholar 

  39. Youssef G et al. The use of 18F-FDG PET in the diagnosis of cardiac sarcoidosis: a systematic review and metaanalysis including the Ontario experience. J Nucl Med. 2012;53(2):241–8.

    Article  PubMed  CAS  Google Scholar 

  40. Ibrahim T et al. Simultaneous positron emission tomography/magnetic resonance imaging identifies sustained regional abnormalities in cardiac metabolism and function in stress-induced transient midventricular ballooning syndrome: a variant of Takotsubo cardiomyopathy. Circulation. 2012;126(21):e324–6.

    Article  PubMed  Google Scholar 

  41. Rota Kops E, Herzog H. Alternative methods for attenuation correction for PET images in MR-PET scanners. IEEE Nucl Sci Symp Conf Rec. 2007;6:4327–30.

    Google Scholar 

  42. Rota Kops E, Qin P, Muller-Veggian M, Herzog H. MRI based attenuation correction for brain PET images. Springer Proc Phys. 2007;114:93–7.

    Article  Google Scholar 

  43. Beyer T et al. MR-based attenuation correction for torso-PET/MR imaging: pitfalls in mapping MR to CT data. Eur J Nucl Med Mol Imaging. 2008;35(6):1142–6.

    Article  PubMed  Google Scholar 

  44. Hofmann M et al. MRI-based attenuation correction for PET/MRI: a novel approach combining pattern recognition and atlas registration. J Nucl Med. 2008;49(11):1875–83.

    Article  PubMed  Google Scholar 

  45. Hofmann M et al. MRI-based attenuation correction for whole-body PET/MRI: quantitative evaluation of segmentation- and atlas-based methods. J Nucl Med. 2011;52(9):1392–9.

    Article  PubMed  Google Scholar 

  46. Steinberg J et al. Three-region MRI-based whole-body attenuation correction for automated PET reconstruction. Nucl Med Biol. 2010;37(2):227–35.

    Article  PubMed  CAS  Google Scholar 

  47. Martinez-Moller A et al. Tissue classification as a potential approach for attenuation correction in whole-body PET/MRI: evaluation with PET/CT data. J Nucl Med. 2009;50(4):520–6.

    Article  PubMed  Google Scholar 

  48. Schulz V et al. Automatic, three-segment, MR-based attenuation correction for whole-body PET/MR data. Eur J Nucl Med Mol Imaging. 2011;38(1):138–52.

    Article  PubMed  CAS  Google Scholar 

  49. Eiber M et al. Value of a Dixon-based MR/PET attenuation correction sequence for the localization and evaluation of PET-positive lesions. Eur J Nucl Med Mol Imaging. 2011;38(9):1691–701.

    Article  PubMed  Google Scholar 

  50. Catana C, Guimaraes AR, Rosen BR. PET and MR Imaging: the odd couple or a match made in heaven? J Nucl Med. 2013; Mar 14. [Epub ahead of print].

Download references

Acknowledgments

The authors would like to acknowledge research funding from the National Institutes of Health (NHLBI-HL110241, PI: Dr El Fakhri) and SDN Foundation (PI: DrNappi). The views presented in this work do not reflect the position of SDN or NIH.

Compliance with Ethics Guidelines

Conflict of Interest

Carmela Nappi declares she has no potential conflict of interest.

Georges El Fakhri declares he has no potential conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georges El Fakhri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nappi, C., El Fakhri, G. State of the Art in Cardiac Hybrid Technology: PET/MR. Curr Cardiovasc Imaging Rep 6, 338–345 (2013). https://doi.org/10.1007/s12410-013-9213-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12410-013-9213-5

Keywords

Navigation