Skip to main content
Log in

Emerging Molecular Targets for Intravascular Imaging of High-Risk Plaques

  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

Accumulating evidence links catastrophic cardiovascular events to the inflammatory, angiogenic, and apoptotic biological profiles underlying high-risk atherosclerotic plaques. While biological detail is opaque to traditional anatomical imaging readouts, emerging molecular imaging approaches are now yielding significant clinical insights into the biological diagnosis, characterization, and treatment of atherosclerotic vascular disease. Yet, while clinical molecular imaging approaches are available for larger arterial beds such as the carotid arteries or aorta, molecular imaging pathways for human coronary arterial plaques are lacking. Excitingly, the recent advent of intravascular near-infrared fluorescence technology now offers new potential for in vivo molecular imaging of key molecular and cellular targets in coronary-sized vasculature. Here we provide a framework for coronary artery–targeted molecular imaging using intravascular imaging technology, and present key molecular imaging targets relevant to the detection of high-risk, vulnerable coronary plaques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Nissen SE: The vulnerable plaque “hypothesis”: promise, but little progress. JACC Cardiovasc Imaging 2009, 2:483–485.

    Article  PubMed  Google Scholar 

  2. Choi SH, Chae A, Chen CH, et al.: Emerging approaches for imaging vulnerable plaques in patients. Curr Opin Biotechnol 2007, 18:73–82.

    Article  CAS  PubMed  Google Scholar 

  3. Libby P: Inflammation in atherosclerosis. Nature 2002, 420:868–874.

    Article  CAS  PubMed  Google Scholar 

  4. Jaffer FA, Libby P, Weissleder R: Molecular imaging of cardiovascular disease. Circulation 2007, 116:1052–1061.

    Article  PubMed  Google Scholar 

  5. Sanz J, Fayad ZA: Imaging of atherosclerotic cardiovascular disease. Nature 2008, 451:953–957.

    Article  CAS  PubMed  Google Scholar 

  6. Calfon MA, Vinegoni C, Ntziachristos V, et al.: Intravascular near-infrared fluorescence molecular imaging of atherosclerosis: toward coronary arterial visualization of biologically high-risk plaques. J Biomed Optics 2010, 15:011107.

    Article  Google Scholar 

  7. Weissleder R, Ntziachristos V: Shedding light onto live molecular targets. Nat Med 2003, 9:123–128.

    Article  CAS  PubMed  Google Scholar 

  8. Ntziachristos V, Ripoll J, Wang LV, et al.: Looking and listening to light: the evolution of whole-body photonic imaging. Nat Biotechnol 2005, 23:313–320.

    Article  CAS  PubMed  Google Scholar 

  9. Jaffer FA, Libby P, Weissleder R: Optical and multimodality molecular imaging: insights into atherosclerosis. Arterioscler Thromb Vasc Biol 2009, 29:1017–1024.

    Article  CAS  PubMed  Google Scholar 

  10. Ntziachristos V, Tung CH, Bremer C, et al.: Fluorescence molecular tomography resolves protease activity in vivo. Nat Med 2002, 8:757–760.

    Article  CAS  PubMed  Google Scholar 

  11. Nahrendorf M, Zhang H, Hembrador S, et al.: Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis. Circulation 2008, 117:379–387.

    Article  CAS  PubMed  Google Scholar 

  12. •• Jaffer FA, Vinegoni C, John MC, et al.: Real-time catheter molecular sensing of inflammation in proteolytically active atherosclerosis. Circulation 2008, 118:1802–1809. This is the first in vivo study of catheter-based intravascular NIRF molecular imaging in human coronary–sized vessels.

    Article  PubMed  Google Scholar 

  13. Lindner JR: Contrast ultrasound molecular imaging of inflammation in cardiovascular disease. Cardiovasc Res 2009, 84:182–189.

    Article  CAS  PubMed  Google Scholar 

  14. Hamilton AJ, Huang SL, Warnick D, et al.: Intravascular ultrasound molecular imaging of atheroma components in vivo. J Am Coll Cardiol 2004, 43:453–460.

    Article  PubMed  Google Scholar 

  15. Kornmann LM, Reesink KD, Reneman RS, et al.: Critical appraisal of targeted ultrasound contrast agents for molecular imaging in large arteries. Ultrasound Med Biol 2010, 36:181–191.

    Article  PubMed  Google Scholar 

  16. Tang TY, Muller KH, Graves MJ, et al.: Iron oxide particles for atheroma imaging. Arterioscler Thromb Vasc Biol 2009, 29:1001–1008.

    Article  CAS  PubMed  Google Scholar 

  17. Wilensky RL, Song HK, Ferrari VA: Role of magnetic resonance and intravascular magnetic resonance in the detection of vulnerable plaques. J Am Coll Cardiol 2006, 47(8 Suppl):C48–C56.

    Article  PubMed  Google Scholar 

  18. Regar E, Hennen B, Grube E, et al.: First-in-man application of a miniature self-contained intracoronary magnetic resonance probe. A multi-centre safety and feasibility trial. EuroIntervention 2006, 2:77–83.

    CAS  PubMed  Google Scholar 

  19. Khadim G, Nanjundappa A, Dieter R.: Intravascular MRI. Curr Cardiovasc Imaging Rep 2009, 2:293–299.

    Article  Google Scholar 

  20. Strauss HW, Mari C, Patt BE, et al.: Intravascular radiation detectors for the detection of vulnerable atheroma. J Am Coll Cardiol 2006, 47(8 Suppl):C97–C100.

    Article  PubMed  Google Scholar 

  21. Jaffer FA, Libby P, Weissleder R: Molecular and cellular imaging of atherosclerosis: emerging applications. J Am Coll Cardiol 2006, 47:1328–1338.

    Article  CAS  PubMed  Google Scholar 

  22. Chen J, Tung CH, Mahmood U, et al.: In vivo imaging of proteolytic activity in atherosclerosis. Circulation 2002, 105:2766–2771.

    Article  PubMed  Google Scholar 

  23. Kim DE, Kim JY, Schellingerhout D, et al.: Protease imaging of human atheromata captures molecular information of atherosclerosis, complementing anatomic imaging. Arterioscler Thromb Vasc Biol 2010, 30:449–456.

    Article  CAS  PubMed  Google Scholar 

  24. Deguchi JO, Aikawa M, Tung CH, et al.: Inflammation in atherosclerosis: visualizing matrix metalloproteinase action in macrophages in vivo. Circulation 2006, 114:55–62.

    Article  PubMed  Google Scholar 

  25. Lutgens SP, Cleutjens KB, Daemen MJ, et al.: Cathepsin cysteine proteases in cardiovascular disease. FASEB J 2007, 21:3029–3041.

    Article  CAS  PubMed  Google Scholar 

  26. • Jaffer FA, Kim DE, Quinti L, et al.: Optical visualization of cathepsin K activity in atherosclerosis with a novel, protease-activatable fluorescence sensor. Circulation 2007, 115:2292–2298. This article discusses the usefulness of lesion-specific proteinase-activatable NIRF imaging for detection of plaque CatK activity.

    Article  CAS  PubMed  Google Scholar 

  27. Blum G, von Degenfeld G, Merchant MJ, et al.: Noninvasive optical imaging of cysteine protease activity using fluorescently quenched activity-based probes. Nat Chem Biol 2007, 3:668–677.

    Article  CAS  PubMed  Google Scholar 

  28. Jaffer FA, Nahrendorf M, Sosnovik D, et al.: Cellular imaging of inflammation in atherosclerosis using magnetofluorescent nanomaterials. Mol Imaging 2006, 5:85–92.

    PubMed  Google Scholar 

  29. Nahrendorf M, Jaffer FA, Kelly KA, et al.: Noninvasive vascular cell adhesion molecule-1 imaging identifies inflammatory activation of cells in atherosclerosis. Circulation 2006, 114:1504–1511.

    Article  CAS  PubMed  Google Scholar 

  30. Kaufmann BA, Sanders JM, Davis C, et al.: Molecular imaging of inflammation in atherosclerosis with targeted ultrasound detection of vascular cell adhesion molecule-1. Circulation 2007, 116:276–284.

    Article  CAS  PubMed  Google Scholar 

  31. Kietselaer BL, Reutelingsperger CP, Heidendal GA, et al.: Noninvasive detection of plaque instability with use of radiolabeled annexin A5 in patients with carotid-artery atherosclerosis. N Engl J Med 2004, 350:1472–1473.

    Article  CAS  PubMed  Google Scholar 

  32. Sosnovik DE, Caravan P: Molecular MRI of atherosclerotic plaque with targeted contrast agents. Curr Cardiovasc Imaging Rep 2009, 2:87–94.

    Article  PubMed  Google Scholar 

  33. • Edgington LE, Berger AB, Blum G, et al.: Noninvasive optical imaging of apoptosis by caspase-targeted activity-based probes. Nat Med 2009, 15:967–973. This study demonstrates the potential of a caspase-specifc activity-based probe for imaging of apopotosis.

    Article  CAS  PubMed  Google Scholar 

  34. Matter CM, Schuler PK, Alessi P, et al.: Molecular imaging of atherosclerotic plaques using a human antibody against the extra-domain B of fibronectin. Circ Res 2004, 95:1225–1233.

    Article  CAS  PubMed  Google Scholar 

  35. Waldeck J, Hager F, Holtke C, et al.: Fluorescence reflectance imaging of macrophage-rich atherosclerotic plaques using an alpha v beta3 integrin-targeted fluorochrome. J Nucl Med 2008, 49:1845–1851.

    Article  PubMed  Google Scholar 

  36. Winter PM, Morawski AM, Caruthers SD, et al.: Molecular imaging of angiogenesis in early-stage atherosclerosis with alpha(v)beta(3)-integrin-targeted nanoparticles. Circulation 2003, 108:2270–2274.

    Article  CAS  PubMed  Google Scholar 

  37. Vavuranakis M, Kakadiaris IA, O’Malley SM, et al.: A new method for assessment of plaque vulnerability based on vasa vasorum imaging, by using contrast-enhanced intravascular ultrasound and differential image analysis. Int J Cardiol 2008, 130:23–29.

    Article  PubMed  Google Scholar 

  38. Vengrenyuk Y, Carlier S, Xanthos S, et al.: A hypothesis for vulnerable plaque rupture due to stress-induced debonding around cellular microcalcifications in thin fibrous caps. Proc Natl Acad Sci U S A 2006, 103:14678–14683.

    Article  CAS  PubMed  Google Scholar 

  39. Virmani R, Burke AP, Farb A, Kolodgie FD: Pathology of the vulnerable plaque. J Am Coll Cardiol 2006, 47(8 Suppl):C13–C18.

    Article  CAS  PubMed  Google Scholar 

  40. •• Aikawa E, Nahrendorf M, Figueiredo JL, et al.: Osteogenesis associates with inflammation in early-stage atherosclerosis evaluated by molecular imaging in vivo. Circulation 2007, 116:2841–2850. By simultaneous mapping of NIRF signals with CLIO-VT 680 and OsteoSense, sequential intravital fluorescence microscopy showed plaque inflammation preceded arterial microcalcification.

    Article  CAS  PubMed  Google Scholar 

  41. Briley-Saebo KC, Shaw PX, Mulder WJ, et al.: Targeted molecular probes for imaging atherosclerotic lesions with magnetic resonance using antibodies that recognize oxidation-specific epitopes. Circulation 2008, 117:3206–3215.

    Article  CAS  PubMed  Google Scholar 

  42. Schwartz RS, Burke A, Farb A, et al.: Microemboli and microvascular obstruction in acute coronary thrombosis and sudden coronary death: relation to epicardial plaque histopathology. J Am Coll Cardiol 2009, 54:2167–2173.

    Article  PubMed  Google Scholar 

  43. Rittersma SZ, van der Wal AC, Koch KT, et al.: Plaque instability frequently occurs days or weeks before occlusive coronary thrombosis: a pathological thrombectomy study in primary percutaneous coronary intervention. Circulation 2005, 111:1160–1165.

    Article  PubMed  Google Scholar 

  44. Jaffer FA, Tung CH, Gerszten RE, et al.: In vivo imaging of thrombin activity in experimental thrombi with thrombin-sensitive near-infrared molecular probe. Arterioscler Thromb Vasc Biol 2002, 22:1929–1935.

    Article  CAS  PubMed  Google Scholar 

  45. Jaffer FA, Tung CH, Wykrzykowska JJ, et al.: Molecular imaging of factor XIIIa activity in thrombosis using a novel, near-infrared fluorescent contrast agent that covalently links to thrombi. Circulation 2004, 110:170–176.

    Article  CAS  PubMed  Google Scholar 

  46. Flaumenhaft R, Tanaka E, Graham GJ, et al. Localization and quantification of platelet-rich thrombi in large blood vessels with near-infrared fluorescence imaging. Circulation 2007, 115:84–93.

    Article  PubMed  Google Scholar 

  47. McCarthy JR, Patel P, Botnaru I, et al.: Multimodal nanoagents for the detection of intravascular thrombi. Bioconjug Chem 2009, 20:1251–1255.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by the American Heart Association Scientist Development Grant (#0830352N to FAJ) and Howard Hughes Medical Institute Early Career Award (FAJ), and the CardioVascular Research Foundation (CVRF) (JWK).

Disclosure

Dr. Jaffer is a consultant for and has equity interest in VisEn Medical.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farouc A. Jaffer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J.W., Jaffer, F.A. Emerging Molecular Targets for Intravascular Imaging of High-Risk Plaques. curr cardiovasc imaging rep 3, 237–247 (2010). https://doi.org/10.1007/s12410-010-9028-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12410-010-9028-6

Keywords

Navigation