Skip to main content
Log in

Structural Changes Associated with Progression of Motor Deficits in Spinocerebellar Ataxia 17

  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Spinocerebellar ataxia (SCA17) is a rare genetic disorder characterized by a variety of neuropsychiatric symptoms. Recently, using magnetic resonance imaging (MRI) voxel-based morphometry (VBM), several specific functional–structural correlations comprising differential degeneration related to motor and psychiatric symptoms were reported in patients with SCA17. To investigate gray matter volume (GMV) changes over time and its association to clinical neuropsychiatric symptomatology, nine SCA17 mutation carriers and nine matched healthy individuals underwent a detailed neuropsychiatric clinical examination and a high-resolution T1-weighted volume MRI scan, both at baseline and follow-up after 18 months. Follow-up images revealed a progressive GMV reduction in specific degeneration patterns. In contrast to healthy controls, SCA17 patients showed a greater atrophy not only in cerebellar regions but also in cortical structures such as the limbic system (parahippocampus, cingulate) and parietal precuneus. Clinically, progression of motor symptoms was more pronounced than that of psychiatric symptoms. Correlation with the clinical motor scores revealed a progressive reduction of GMV in cerebellar and cerebral motor networks, whereas correlation with psychiatric scores displayed a more widespread GMV impairment in frontal, limbic, parietal, and also cerebellar structures. Interestingly, changes in global functioning were correlated with bilateral atrophy within the para-/hippocampus. While there was a good temporal association between worsening of motor symptoms and progression in cerebral and cortical neurodegeneration, the progression in psychiatric related neurodegeneration seemed to be more widespread and complex, showing progressive atrophy that preceded the further development of clinical psychiatric symptoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. Hagenah J, Reetz K, Zuhlke C, Rolfs A, Binkofski F, Klein C (2007) Predominant dystonia with marked cerebellar atrophy: a rare phenotype in familial dystonia. Neurology 68(24):2157 author reply -8

    Article  CAS  PubMed  Google Scholar 

  2. Lasek K, Lencer R, Gaser C, Hagenah J, Walter U, Wolters A et al (2006) Morphological basis for the spectrum of clinical deficits in spinocerebellar ataxia 17 (SCA17). Brain 129(Pt 9):2341–2352

    Article  CAS  PubMed  Google Scholar 

  3. Maltecca F, Filla A, Castaldo I, Coppola G, Fragassi NA, Carella M et al (2003) Intergenerational instability and marked anticipation in SCA-17. Neurology 61(10):1441–1443

    CAS  PubMed  Google Scholar 

  4. Hagenah JM, Zuhlke C, Hellenbroich Y, Heide W, Klein C (2004) Focal dystonia as a presenting sign of spinocerebellar ataxia 17. Mov Disord 19(2):217–220

    Article  PubMed  Google Scholar 

  5. Hernandez D, Hanson M, Singleton A, Gwinn-Hardy K, Freeman J, Ravina B et al (2003) Mutation at the SCA17 locus is not a common cause of Parkinsonism. Parkinsonism Relat Disord 9(6):317–320

    Article  PubMed  Google Scholar 

  6. Zuhlke C, Dalski A, Schwinger E, Finckh U (2005) Spinocerebellar ataxia type 17: report of a family with reduced penetrance of an unstable Gln49 TBP allele, haplotype analysis supporting a founder effect for unstable alleles and comparative analysis of SCA17 genotypes. BMC Med Genet 6(1):27

    Article  PubMed  Google Scholar 

  7. Rolfs A, Koeppen AH, Bauer I, Bauer P, Buhlmann S, Topka H et al (2003) Clinical features and neuropathology of autosomal dominant spinocerebellar ataxia (SCA17). Ann Neurol 54(3):367–375

    Article  PubMed  Google Scholar 

  8. Nakamura K, Jeong SY, Uchihara T, Anno M, Nagashima K, Nagashima T et al (2001) SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein. Hum Mol Genet 10(14):1441–1448

    Article  CAS  PubMed  Google Scholar 

  9. Koide R, Kobayashi S, Shimohata T, Ikeuchi T, Maruyama M, Saito M et al (1999) A neurological disease caused by an expanded CAG trinucleotide repeat in the TATA-binding protein gene: a new polyglutamine disease? Hum Mol Genet 8(11):2047–2053

    Article  CAS  PubMed  Google Scholar 

  10. Zuhlke C, Burk K (2007) Spinocerebellar ataxia type 17 is caused by mutations in the TATA-box binding protein. Cerebellum:1–8

  11. Helsinki WMADo (2000) Ethical principles for medical research involving human subjects. JAMA 284(23):3043–3045

    Article  Google Scholar 

  12. Good CD, Johnsrude IS, Ashburner J, Henson RN, Friston KJ, Frackowiak RS (2001) A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage 14(1 Pt 1):21–36

    Article  CAS  PubMed  Google Scholar 

  13. Ashburner J, Friston KJ (1999) Nonlinear spatial normalization using basis functions. Hum Brain Mapp 7(4):254–266

    Article  CAS  PubMed  Google Scholar 

  14. Maldjian JA, Laurienti PJ, Kraft RA, Burdette JH (2003) An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage 19(3):1233–1239

    Article  PubMed  Google Scholar 

  15. Schmahmann JD, Doyon J, Toga AW, Terides M, Evans AC (2000) MRI Atlas of the human cerebellum. Academic, San Diego, California

    Google Scholar 

  16. Wells R, Ashizawa T (2006) Spinocerebellar Ataxia 17 and Huntington's disease-like 4. Genetic instabilities, neurological diseases. Second Edition. Academic Press

  17. Toyoshima Y, Yamada M, Onodera O, Shimohata M, Inenaga C, Fujita N et al (2004) SCA17 homozygote showing Huntington's disease-like phenotype. Ann Neurol 55(2):281–286

    Article  CAS  PubMed  Google Scholar 

  18. Klockgether T, Skalej M, Wedekind D, Luft AR, Welte D, Schulz JB et al (1998) Autosomal dominant cerebellar ataxia type I. MRI-based volumetry of posterior fossa structures and basal ganglia in spinocerebellar ataxia types 1, 2 and 3. Brain 121(Pt 9):1687–1693

    Article  PubMed  Google Scholar 

  19. Wang PS, Liu RS, Yang BH, Soong BW (2007) Regional patterns of cerebral glucose metabolism in spinocerebellar ataxia type 2, 3 and 6: a voxel-based FDG-positron emission tomography analysis. J Neurol 254(7):838–845

    Article  PubMed  Google Scholar 

  20. Wullner U, Reimold M, Abele M, Burk K, Minnerop M, Dohmen BM et al (2005) Dopamine transporter positron emission tomography in spinocerebellar ataxias type 1, 2, 3, and 6. Arch Neurol 62(8):1280–1285

    Article  PubMed  Google Scholar 

  21. Loy CT, Sweeney MG, Davis MB, Wills AJ, Sawle GV, Lees AJ et al (2005) Spinocerebellar ataxia type 17: extension of phenotype with putaminal rim hyperintensity on magnetic resonance imaging. Mov Disord

  22. Lin IS, Wu RM, Lee-Chen GJ, Shan DE, Gwinn-Hardy K (2007) The SCA17 phenotype can include features of MSA-C, PSP and cognitive impairment. Parkinsonism Relat Disord 13(4):246–249

    Article  PubMed  Google Scholar 

  23. Gunther P, Storch A, Schwarz J, Sabri O, Steinbach P, Wagner A et al (2004) Basal ganglia involvement of a patient with SCA 17—a new form of autosomal dominant spinocerebellar ataxia. J Neurol 251(7):896–897

    Article  CAS  PubMed  Google Scholar 

  24. Minnerop M, Joe A, Lutz M, Bauer P, Urbach H, Helmstaedter C et al (2005) Putamen dopamine transporter and glucose metabolism are reduced in SCA17. Ann Neurol 58(3):490–491

    Article  CAS  PubMed  Google Scholar 

  25. Salvatore E, Varrone A, Sansone V, Nolano M, Bruni AC, De Rosa A et al (2006) Characterization of nigrostriatal dysfunction in spinocerebellar ataxia 17. Mov Disord 21(6):872–875

    Article  PubMed  Google Scholar 

  26. Heinzel A, Bermpohl F, Niese R, Pfennig A, Pascual-Leone A, Schlaug G et al (2005) How do we modulate our emotions? Parametric fMRI reveals cortical midline structures as regions specifically involved in the processing of emotional valences. Brain Res Cogn Brain Res 25(1):348–358

    Article  PubMed  Google Scholar 

  27. Cavanna AE, Trimble MR (2006) The precuneus: a review of its functional anatomy and behavioural correlates. Brain 129(Pt 3):564–583

    Article  PubMed  Google Scholar 

  28. Davis KD, Taylor KS, Hutchison WD, Dostrovsky JO, McAndrews MP, Richter EO et al (2005) Human anterior cingulate cortex neurons encode cognitive and emotional demands. J Neurosci 25(37):8402–8406

    Article  CAS  PubMed  Google Scholar 

  29. Kantarci K, Jack CR Jr (2003) Neuroimaging in Alzheimer disease: an evidence-based review. Neuroimaging Clin N Am 13(2):197–209

    Article  PubMed  Google Scholar 

  30. Frodl T, Schaub A, Banac S, Charypar M, Jager M, Kummler P et al (2006) Reduced hippocampal volume correlates with executive dysfunctioning in major depression. J Psychiatry Neurosci 31(5):316–323

    PubMed  Google Scholar 

  31. Reetz K, Lencer R, Steinlechner S, Gaser C, Hagenah J, Buchel C et al (2008) Limbic and frontal cortical degeneration is associated with psychiatric symptoms in PINK1 mutation carriers. Biol Psychiatry

  32. Dhikav V, Anand KS (2007) Is hippocampal atrophy a future drug target? Med Hypotheses 68(6):1300–1306

    Article  CAS  PubMed  Google Scholar 

  33. McEwen BS (1997) Possible mechanisms for atrophy of the human hippocampus. Mol Psychiatry 2(3):255–262

    Article  CAS  PubMed  Google Scholar 

  34. Middleton FA, Strick PL (2000) Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res Brain Res Rev 31(2–3):236–250

    Article  CAS  PubMed  Google Scholar 

  35. Alexander GE, Crutcher MD, DeLong MR (1990) Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, "prefrontal" and "limbic" functions. Prog Brain Res 85:119–146

    Article  CAS  PubMed  Google Scholar 

  36. Liotti M, Mayberg HS, Brannan SK, McGinnis S, Jerabek P, Fox PT (2000) Differential limbic–cortical correlates of sadness and anxiety in healthy subjects: implications for affective disorders. Biol Psychiatry 48(1):30–42

    Article  CAS  PubMed  Google Scholar 

  37. Schmahmann JD, Sherman JC (1997) Cerebellar cognitive affective syndrome. Int Rev Neurobiol 41:433–440

    Article  CAS  PubMed  Google Scholar 

  38. Leroi I, O'Hearn E, Marsh L, Lyketsos CG, Rosenblatt A, Ross CA et al (2002) Psychopathology in patients with degenerative cerebellar diseases: a comparison to Huntington's disease. Am J Psychiatry 159(8):1306–1314

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully thank all the participants for their invaluable collaboration.

This work was supported by intramural grants from the Medical Faculty, University of Luebeck to KR (E06-2008) and CK. CK was further supported by the Hermann and Lilly Schilling Foundation. The Volkswagen Stiftung supported FB and CK.

Competing interests

The authors have no financial or other interests to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferdinand Binkofski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reetz, K., Lencer, R., Hagenah, J.M. et al. Structural Changes Associated with Progression of Motor Deficits in Spinocerebellar Ataxia 17. Cerebellum 9, 210–217 (2010). https://doi.org/10.1007/s12311-009-0150-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-009-0150-4

Keywords

Navigation