Skip to main content

Advertisement

Log in

Role of Inflammation and Its Mediators in Acute Ischemic Stroke

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Inflammation plays an important role in the pathogenesis of ischemic stroke and other forms of ischemic brain injury. Increasing evidence suggests that inflammatory response is a double-edged sword, as it not only exacerbates secondary brain injury in the acute stage of stroke but also beneficially contributes to brain recovery after stroke. In this article, we provide an overview on the role of inflammation and its mediators in acute ischemic stroke. We discuss various pro-inflammatory and anti-inflammatory responses in different phases after ischemic stroke and the possible reasons for their failures in clinical trials. Undoubtedly, there is still much to be done in order to translate promising pre-clinical findings into clinical practice. A better understanding of the dynamic balance between pro- and anti-inflammatory responses and identifying the discrepancies between pre-clinical studies and clinical trials may serve as a basis for designing effective therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang, X. (2005). Investigational anti-inflammatory agents for the treatment of ischemic brain injury. Expert Opinion on Investigational Drugs, 14, 393–409.

    PubMed  CAS  Google Scholar 

  2. Barone, F. C., & Feuerstein, G. Z. (1999). Inflammatory mediators and stroke: new opportunities for novel therapeutics. Journal of Cerebral Blood Flow and Metabolism, 19, 819–834.

    PubMed  CAS  Google Scholar 

  3. Chamorro, A., & Hallenbeck, J. (2006). The harms and benefits of inflammatory and immune responses in vascular disease. Stroke, 37, 291–293.

    PubMed  Google Scholar 

  4. Samson, Y., Lapergue, B., & Hosseini, H. (2005). Inflammation and ischaemic stroke: current status and future perspectives. Reviews Neurology (Paris), 161, 1177–1182.

    CAS  Google Scholar 

  5. Yilmaz, G., & Granger, D. N. (2008). Cell adhesion molecules and ischemic stroke. Neurological Research, 30, 783–793.

    PubMed  Google Scholar 

  6. Emsley, H. C., & Hopkins, S. J. (2008). Acute ischaemic stroke and infection: recent and emerging concepts. Lancet Neurology, 7, 341–353.

    PubMed  Google Scholar 

  7. McColl, B. W., Allan, S. M., & Rothwell, N. J. (2009). Systemic infection, inflammation and acute ischemic stroke. Neuroscience, 158, 1049–1061.

    PubMed  CAS  Google Scholar 

  8. Jin, R., Yang, G., & Li, G. (2010). Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. Journal of Leukocyte Biology, 87, 779–89.

    PubMed  CAS  Google Scholar 

  9. Iadecola, C., & Anrather, J. (2011). The immunology of stroke: from mechanisms to translation. Nature Medicine, 17, 796–808.

    PubMed  CAS  Google Scholar 

  10. Hallenbeck, J. M. (1996). Significance of the inflammatory response in brain ischemia. Acta Neurochirurgica. Supplement, 66, 27–31.

    PubMed  CAS  Google Scholar 

  11. Chopp, M., Li, Y., Jiang, N., Zhang, R. L., & Prostak, J. (1996). Antibodies against adhesion molecules reduce apoptosis after transient middle cerebral artery occlusion in rat brain. Journal of Cerebral Blood Flow and Metabolism, 16, 578–584.

    PubMed  CAS  Google Scholar 

  12. Connolly, E. S., Jr., Winfree, C. J., Prestigiacomo, C. J., Kim, S. C., Choudhri, T. F., Hoh, B. L., et al. (1997). Exacerbation of cerebral injury in mice that express the P-selectin gene: identification of P-selectin blockade as a new target for the treatment of stroke. Circulation Research, 81, 304–310.

    PubMed  CAS  Google Scholar 

  13. Garau, A., Bertini, R., Colotta, F., Casilli, F., Bigini, P., Cagnotto, A., et al. (2005). Neuroprotection with the CXCL8 inhibitor repertaxin in transient brain ischemia. Cytokine, 30, 125–131.

    PubMed  CAS  Google Scholar 

  14. Yenari, M. A., Kunis, D., Sun, G. H., Onley, D., Watson, L., Turner, S., et al. (1998). Hu23F2G, an antibody recognizing the leukocyte CD11/CD18 integrin, reduces injury in a rabbit model of transient focal cerebral ischemia. Experimental Neurology, 153, 223–233.

    PubMed  CAS  Google Scholar 

  15. Zheng, Z., & Yenari, M. A. (2004). Post-ischemic inflammation: molecular mechanisms and therapeutic implications. Neurological Research, 26, 884–892.

    PubMed  CAS  Google Scholar 

  16. Barone, F. C., Arvin, B., White, R. F., Miller, A., Webb, C. L., Lysko, P. G., et al. (1997). Tumor necrosis factor-α: a mediator of focal ischemic brain injury. Stroke, 28, 1233–1244.

    PubMed  CAS  Google Scholar 

  17. Rothwell, N., Allan, S., & Toulmond, S. (1997). The role of interleukin 1 in acute neurodegeneration and stroke: pathophysiological and therapeutic implications. Journal of Clinical Investigation, 100, 2648–2652.

    PubMed  CAS  Google Scholar 

  18. Felger, J. C., Abe, T., Kaunzner, U. W., Gottfried-Blackmore, A., Gal-Toth, J., McEwen, B. S., et al. (2010). Brain dendritic cells in ischemic stroke: time course, activation state, and origin. Brain, Behavior, and Immunity, 24, 724–737.

    PubMed  CAS  Google Scholar 

  19. Tanaka, R., Komine-Kobayashi, M., Mochizuki, H., Yamada, M., Furuya, T., Migita, M., et al. (2003). Migration of enhanced green fluorescent protein expressing bone marrow-derived microglia/macrophage into the mouse brain following permanent focal ischemia. Neuroscience, 117, 531–539.

    PubMed  CAS  Google Scholar 

  20. Konsman, J. P., Drukarch, B., & Van Dam, A. M. (2007). (Peri)vascular production and action of pro-inflammatory cytokines in brain pathology. Clinical Science (London, England), 112, 1–25.

    CAS  Google Scholar 

  21. Shigematsu, T., Wolf, R. E., & Granger, D. N. (2002). T-lymphocytes modulate the microvascular and inflammatory responses to intestinal ischemia–reperfusion. Microcirculation, 9, 99–109.

    PubMed  Google Scholar 

  22. Zwacka, R. M., Zhang, Y., Halldorson, J., Schlossberg, H., Dudus, L., & Engelhardt, J. F. (1997). CD4(+) T-lymphocytes mediate ischemia/reperfusion-induced inflammatory responses in mouse liver. Journal of Clinical Investigation, 100, 279–289.

    PubMed  CAS  Google Scholar 

  23. Yilmaz, G., Arumugam, T. V., Stokes, K. Y., & Granger, D. N. (2006). Role of T lymphocytes and interferon-γ in ischemic stroke. Circulation, 113, 2105–2112.

    PubMed  Google Scholar 

  24. Kreutzberg, G. W. (1996). Microglia: a sensor for pathological events in the CNS. Trends in Neurosciences, 19, 312–318.

    PubMed  CAS  Google Scholar 

  25. Thomas, W. E. (1992). Brain macrophages: evaluation of microglia and their functions. Brain Research, 17, 61–74.

    PubMed  CAS  Google Scholar 

  26. Lalancette-Hébert, M., Gowing, G., Simard, A., Weng, Y. C., & Kriz, J. (2007). Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. Journal of Neuroscience, 27, 2596–2605.

    PubMed  Google Scholar 

  27. Lai, A. Y., & Todd, K. G. (2006). Microglia in cerebral ischemia: molecular actions and interactions. Canadian Journal of Physiology and Pharmacology, 84, 49–59.

    PubMed  CAS  Google Scholar 

  28. Denes, A., Vidyasagar, R., Feng, J., Narvainen, J., McColl, B. W., Kauppi-nen, R. A., et al. (2007). Proliferating resident microglia after focal cerebral ischaemia in mice. Journal of Cerebral Blood Flow and Metabolism, 27, 1941–1953.

    PubMed  CAS  Google Scholar 

  29. George, B., Robin, E., White, Y. O., Lijun, X., & Giffard, G. R. (2011). Astrocytes: targets for neuroprotection in stroke. Central Nervous System Agents in Medicinal Chemistry, 11, 164–173.

    Google Scholar 

  30. Nowicka, D., Rogozinska, K., Aleksy, M., Witte, O. W., & Skangiel-Kramska, J. (2008). Spatiotemporal dynamics of astroglial and microglial responses after photothrombotic stroke in the rat brain. Acta Neurobiologiae Experimentalis (Wars), 68, 155–168.

    Google Scholar 

  31. Zhu, Y., Roth-Eichhorn, S., Braun, N., Culmsee, C., Rami, A., & Krieglstein, J. (2000). The expression of transforming growth factor-beta1 (TGF-beta1) in hippocampal neurons: a temporary upregulated protein level after transient forebrain ischemia in the rat. Brain Research, 866, 286–298.

    PubMed  CAS  Google Scholar 

  32. Benveniste, E. N. (1998). Cytokine actions in the central nervous system. Cytokine & Growth Factor Reviews, 9, 259–275.

    CAS  Google Scholar 

  33. Che, X., Ye, W., Panga, L., Wu, D. C., & Yang, G. Y. (2001). Monocyte chemoattractant protein-1 expressed in neurons and astrocytes during focal ischemia in mice. Brain Research, 902, 171–177.

    PubMed  CAS  Google Scholar 

  34. Dong, Y., & Benveniste, E. N. (2001). Immune function of astrocytes. Glia, 36, 180–190.

    PubMed  CAS  Google Scholar 

  35. Wang, W., Redecker, C., Yu, Z. Y., Xie, M. J., Tian, D. S., Zhang, L., et al. (2008). Rat focal cerebral ischemia induced astrocyte proliferation and delayed neuronal death are attenuated by cyclin-dependent kinase inhibition. Journal of Clinical Neuroscience, 15, 278–285.

    PubMed  CAS  Google Scholar 

  36. Sharif, A., Legendre, P., Prevot, V., Allet, C., Romao, L., Studler, J. M., et al. (2007). Transforming growth factor alpha promotes sequential conversion of mature astrocytes into neural progenitors and stem cells. Oncogene, 26, 2695–2706.

    PubMed  CAS  Google Scholar 

  37. Justicia, C., Perez-Asensio, F. J., Burguete, M. C., Salom, J. B., & Planas, A. M. (2001). Administration of transforming growth factor-alpha reduces infarct volume after transient focal cerebral ischemia in the rat. Journal of Cerebral Blood Flow and Metabolism, 21, 1097–1104.

    PubMed  CAS  Google Scholar 

  38. Meistrell, M. E., 3rd, Botchkina, G. I., Wang, H., Di Santo, E., Cockroft, K. M., Bloom, O., et al. (1997). Tumor necrosis factor is a brain damaging cytokine in cerebral ischemia. Shock, 8, 341–348.

    PubMed  Google Scholar 

  39. Barger, S. W., Horster, D., Furukawa, K., Goodman, Y., Krieglstein, J., & Mattson, M. P. (1996). Tumor necrosis factors alpha and beta protect neurons against amyloid beta-peptide toxicity: evidence for involvement of a kappa B-binding factor and attenuation of peroxide and Ca2+ accumulation. Proceedings of the National Academy of Sciences of the United States of America, 92, 9328–9332.

    Google Scholar 

  40. Lambertsen, K. L., Clausen, B. H., Babcock, A. A., Gregersen, R., Fenger, C., Nielsen, H. H., et al. (2009). Microglia protect neurons against ischemia by synthesis of tumor necrosis factor. Journal of Neuroscience, 29, 1319–1330.

    PubMed  CAS  Google Scholar 

  41. Boutin, H., LeFeuvre, R. A., Horai, R., Asano, M., Iwakura, Y., & Rothwell, N. J. (2001). Role of IL-1alpha and IL-1beta in ischemic brain damage. Journal of Neuroscience, 21, 5528–5534.

    PubMed  CAS  Google Scholar 

  42. Yamasaki, Y., Matsuura, N., Shozuhara, H., Onodera, H., Itoyama, Y., & Kogure, K. (1995). Interleukin-1 as a pathogenetic mediator of ischemic brain damage in rats. Stroke, 26, 676–680.

    PubMed  CAS  Google Scholar 

  43. Loddick, S. A., Turnbull, A. V., & Rothwell, N. J. (1998). Cerebral interleukin-6 is neuroprotective during permanent focal cerebral ischemia in the rat. Journal of Cerebral Blood Flow and Metabolism, 18, 176–179.

    PubMed  CAS  Google Scholar 

  44. Stamatovic, S. M., Shakui, P., Keep, R. F., Moore, B. B., Kunkel, S. L., Van, R. N., et al. (2005). Monocyte chemoattractant protein-1 regulation of blood–brain barrier permeability. Journal of Cerebral Blood Flow and Metabolism, 25, 593–606.

    PubMed  CAS  Google Scholar 

  45. Soriano, S. G., Amaravadi, L. S., Wang, Y. F., Zhou, H., Yu, G. X., Tonra, J. R., et al. (2002). Mice deficient in fractalkine are less susceptible to cerebral ischemia–reperfusion injury. Journal of Neuroimmunology, 125, 59–65.

    PubMed  CAS  Google Scholar 

  46. Spera, P. A., Ellison, J. A., Feuerstein, G. Z., & Barone, F. C. (1998). IL-10 reduces rat brain injury following focal stroke. Neuroscience Letters, 251, 189–192.

    PubMed  CAS  Google Scholar 

  47. Ooboshi, H., Ibayashi, S., Shichita, T., Kumai, Y., Takada, J., & Ago, T. (2005). Postischemic gene transfer of interleukin-10 protects against both focal and global brain ischemia. Circulation, 111, 913–919.

    PubMed  CAS  Google Scholar 

  48. Pang, L., Ye, W., Che, X. M., Roessler, B. J., Betz, A. L., & Yang, G. Y. (2001). Reduction of inflammatory response in the mouse brain with adenoviral-mediated transforming growth factor-ss1 expression. Stroke, 32, 544–552.

    PubMed  CAS  Google Scholar 

  49. Ruocco, A., Nicole, O., Docagne, F., Ali, C., Chazalviel, L., Komesli, S., et al. (1999). A transforming growth factor-b antagonist unmasks the neuroprotective role of this endogenous cytokine in excitotoxic and ischemic brain injury. Journal of Cerebral Blood Flow and Metabolism, 19, 1345–1353.

    PubMed  CAS  Google Scholar 

  50. Zhang, Y., Wei, X., Liu, L., Liu, S., Wang, Z., Zhang, B., et al. (2012). TIPE2, a novel regulator of immunity, protects against experimental stroke. Journal of Biological Chemistry, 287, 32546–32555.

    PubMed  CAS  Google Scholar 

  51. Kooijman, R., Sarre, S., Michotte, Y., & Keyser, D. J. (2009). Insulin-like growth factor I: a potential neuroprotective compound for the treatment of acute ischemic stroke? Stroke, 404, e83–88.

    Google Scholar 

  52. Denti, L., Annoni, V., Cattadori, E., Salvagnini, M. A., Visioli, S., & Merli, M. F. (2004). Insulin-like growth factor 1 as a predictor of ischemic stroke outcome in the elderly. American Journal of Medicine, 117, 312–317.

    PubMed  CAS  Google Scholar 

  53. Liu, T., Clark, R. K., McDonnell, P. C., Young, P. R., White, R. F., & Barone, F. C. (1994). Tumor necrosis factor-α expression in ischemic neurons. Stroke, 25, 1481–1488.

    PubMed  CAS  Google Scholar 

  54. Wang, X., Yue, T. L., Barone, F. C., White, R. F., Gagnon, R. C., & Feuerstein, G. Z. (1994). Concomitant cortical expression of TNF-α and IL-1 α mRNAs follows early response gene expression in transient focal ischemia. Molecular and Chemical Neuropathology, 23, 103–114.

    PubMed  CAS  Google Scholar 

  55. Murakami, Y., Saito, K., Hara, A., Zhu, Y., Sudo, K., Niwa, M., et al. (2005). Increases in tumor necrosis factor-alpha following transient global cerebral ischemia do not contribute to neuron death in mouse hippocampus. Journal of Neurochemistry, 93, 1616–1622.

    PubMed  CAS  Google Scholar 

  56. Offner, H., Subramanian, S., Parker, S. M., Afentoulis, M. E., Vandenbark, A. A., & Hurn, P. D. (2006). Experimental stroke induces massive, rapid activation of the peripheral immune system. Journal of Cerebral Blood Flow and Metabolism, 26, 654–665.

    PubMed  CAS  Google Scholar 

  57. Hallenbeck, J. M. (2002). The many faces of tumor necrosis factor in stroke. Nature Medicine, 8, 1363–1368.

    PubMed  CAS  Google Scholar 

  58. Ginis, I., Jaiswal, R., Klimanis, D., Liu, J., Greenspon, J., & Hallenbeck, J. M. (2002). TNF-alpha-induced tolerance to ischemic injury involves differential control of NF-kappaB transactivation: the role of NF-kappaB association with p300 adaptor. Journal of Cerebral Blood Flow and Metabolism, 22, 142–152.

    PubMed  CAS  Google Scholar 

  59. Alikhani, M., Alikhani, Z., Raptis, M., & Graves, D. T. J. (2004). TNF-alpha in vivo stimulates apoptosis in fibroblasts through caspase-8 activation and modulates the expression of pro-apoptotic genes. Cell Physiology, 201, 341–348.

    CAS  Google Scholar 

  60. Plumpe, J., Malek, N. K., Bock, C. T., Rakemann, T., Manns, M. P., & Trautwein, C. (2000). NF-kappaB determines between apoptosis and proliferation in hepatocytes during liver regeneration. American Journal of Physiology—Gastrointestinal and Liver Physiology, 278, 173–183.

    Google Scholar 

  61. Zeng, L., Liu, J., Wang, Y., Wang, L., Weng, S., Chen, S., et al. (2012). Cocktail blood biomarkers: prediction of clinical outcomes in patients with acute ischemic stroke. European Neurology, 69(2), 68–75.

    PubMed  Google Scholar 

  62. Thornberry, N. A., Bull, H. G., Calaycay, J. R., Chapman, K. T., Howard, A. D., & Kostura, M. J. (1992). A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature, 356, 768–774.

    PubMed  CAS  Google Scholar 

  63. Dinarello, C. A. (1996). Biologic basis for interleukin-1 in disease. Blood, 15, 2095–2147.

    Google Scholar 

  64. Black, R. A., Kronheim, S. R., & Sleath, P. R. (1989). Activation of interleukin-1β by a co-induced protease. FEBS Letters, 247, 386–390.

    PubMed  CAS  Google Scholar 

  65. Schonbeck, V., Mach, F., & Libby, P. (1998). Generation of biologically active IL-1β by matrix metalloproteinase a novel caspase-1 independent pathway of IL-1β processing. Journal of Immunology, 161, 3340–3346.

    CAS  Google Scholar 

  66. Dinarello, C. A., & Wolff, S. M. (1993). The role of interleukin-1 in disease. New England Journal of Medicine, 328, 106–113.

    PubMed  CAS  Google Scholar 

  67. Bankers-Fulbright, J. L., Kalli, K. R., & McLean, D. J. (1996). IL-1 signal transduction. Life Sciences, 59, 61–83.

    PubMed  CAS  Google Scholar 

  68. Rothwell, N. J., & Luheshi, G. N. (2000). Interleukin 1 in the brain: biology, pathology and therapeutic target. Trends in Neurosciences, 23, 618–625.

    PubMed  CAS  Google Scholar 

  69. Koga, S., Ogawa, S., Kuwabara, K., Brett, J., Leavy, J. A., & Ryan, J. (1992). Synthesis and release of interleukin 1 by reoxygenated human mononuclear phagocytes. Journal of Clinical Investigation, 90, 1007–1015.

    PubMed  CAS  Google Scholar 

  70. Basu, A., Lazovic, J., Krady, J. K., Mauger, D. T., Rothstein, R. P., Smith, M. B., et al. (2005). Interleukin-1 and the interleukin-1 type 1 receptor are essential for the progressive neurodegeneration that ensues subsequent to a mild hypoxic/ischemic injury. Journal of Cerebral Blood Flow and Metabolism, 25, 17–29.

    PubMed  CAS  Google Scholar 

  71. Herrmann, O., Tarabin, V., Suzuki, S., Attigah, N., Coserea, I., & Schneider, A. (2003). Regulation of body temperature and neuroprotection by endogenous interleukin-6 in cerebral ischemia. Journal of Cerebral Blood Flow and Metabolism, 23, 406–415.

    PubMed  CAS  Google Scholar 

  72. Waje-Andreassen, U., Kråkenes, J., Ulvestad, E., Thomassen, L., Myhr, K. M., Aarseth, J., et al. (2005). IL-6: an early marker for outcome in acute ischemic stroke. Acta Neurologica Scandinavica, 111, 360–365.

    PubMed  CAS  Google Scholar 

  73. Scheller, J., Chalaris, A., Schmidt-Arras, D., & Rose-John, S. (1813). The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochimica et Biophysica Acta, 2011, 878–888.

    Google Scholar 

  74. Connolly, E. S. J., Winfree, C. J., Springer, T. A., Naka, Y., Liao, H., & Yan, S. D. (1996). Cerebral protection in homozygous null ICAM-1 mice after middle cerebral artery occlusion. Role of neutrophil adhesion in the pathogenesis of stroke. Journal of Clinical Investigation, 97, 209–16.

    PubMed  CAS  Google Scholar 

  75. Moore, K. L., Eaton, S. F., Lyons, D. E., Lichenstein, H. S., Cummings, R. D., & McEver, R. P. (1994). The P-selectin glycoprotein ligand from human neutrophils displays sialylated, fucosylated, O-linked poly-N-acetyllactosamine. Journal of Biological Chemistry, 269, 23318–23327.

    PubMed  CAS  Google Scholar 

  76. Stenberg, P. E., Shuman, M. A., Levine, S. P., & Bainton, D. F. (1984). Redistribution of alpha-granules and their contents in thrombin-stimulated platelets. Journal of Cell Biology, 98, 748–760.

    PubMed  CAS  Google Scholar 

  77. Bargatze, R. F., Kurk, S., Butcher, E. C., & Jutila, M. A. (1994). Neutrophils roll on adherent neutrophils bound to cytokine-induced endothelial cells via L-selectin on the rolling cells. Journal of Experimental Medicine, 180, 1785–1792.

    PubMed  CAS  Google Scholar 

  78. Mayadas, T. N., Johnson, R. C., Rayburn, H., Hynes, R. O., & Wagner, D. D. (1993). Leukocyte rolling and extravasation are severely compromised in P-selectin deficient mice. Cell, 74, 541–554.

    PubMed  CAS  Google Scholar 

  79. Huang, J., Kim, L. J., Mealey, R., Marsh, H. C., Zhang, Y., Tenner, A. J., et al. (1999). Neuronal protection in stroke by an sLex-glycosylated complement inhibitory protein. Science, 285, 595–599.

    PubMed  CAS  Google Scholar 

  80. Huang, J., Choudhri, T. F., Winfree, C. J., McTaggart, R. A., Kiss, S., Mocco, J., et al. (2000). Postischemic cerebrovascular E-selectin expression mediates tissue injury in murine stroke. Stroke, 31, 3047–3053.

    PubMed  CAS  Google Scholar 

  81. Mocco, J., Choudhri, T., Huang, J., Harfeldt, E., Efros, L., Klingbeil, C., et al. (2002). HuEP5C7 as a humanized monoclonal anti-E/P-selectin neurovascular protective strategy in a blinded placebo-controlled trial of nonhuman primate stroke. Circulation Research, 91, 907–914.

    PubMed  CAS  Google Scholar 

  82. Lehmberg, J., Beck, J., Baethmann, A., & Uhl, E. (2006). Effect of P-selectin inhibition on leukocyte endothelium interaction and survival after global cerebral ischemia. Journal of Neurology, 253, 357–363.

    PubMed  CAS  Google Scholar 

  83. Cha, J. K., Jeong, M. H., Kim, E. K., Lim, Y. J., Ha, B. R., & Kim, S. H. (2002). Surface expression of P-selectin on platelets is related with clinical worsening in acute ischemic stroke. Journal of Korean Medical Science, 17, 811–816.

    PubMed  CAS  Google Scholar 

  84. Zhao, D. X., Feng, J., Cong, S. Y., & Zhang, W. (2012). Association of E-selectin gene polymorphisms with ischemic stroke in a Chinese Han population. Journal of Neuroscience Research, 90, 1782–1787.

    PubMed  CAS  Google Scholar 

  85. Kaba, N. K., Schultz, J., Law, F. Y., Lefort, C. T., Martel-Gallegos, G., Kim, M., et al. (2008). Inhibition of Na+/H+ exchanger enhances low pH-induced L-selectin shedding and beta2-integrin surface expression in human neutrophils. American Journal of Physiology. Cell Physiology, 295, C1454–1463.

    PubMed  CAS  Google Scholar 

  86. Springer, T. A. (1990). Adhesion receptors of the immune system. Nature, 346, 425.

    PubMed  CAS  Google Scholar 

  87. Gahmberg, C. G. M., Tolvanen, P., & Kotovuori. (1997). Leukocyte adhesion: structure and function of human leukocyte β2-integrins and their cellular ligands. European Journal of Biochemistry, 245, 215–232.

    PubMed  CAS  Google Scholar 

  88. Diacovo, T. G., de Fougerolles, A. R., Bainton, D. F., & Springer, T. A. (1994). A functional integrin ligand on the surface of platelets: intercellular adhesion molecule-2. Journal of Clinical Investigation, 94, 1243–1251.

    PubMed  CAS  Google Scholar 

  89. Zhang, R. L., Chopp, M., Chen, H., & Garcia, J. H. (1994). Temporal profile of ischemic tissue damage, neutrophil response, and vascular plugging following permanent and transient (2H) middle cerebral artery occlusion in the rat. Journal of Neurological Sciences, 125, 3–10.

    CAS  Google Scholar 

  90. Kanemoto, Y., Nakase, H., Akita, N., & Sakaki, T. (2002). Effects of anti-intercellular adhesion molecule-1 antibody on reperfusion injury induced by late reperfusion in the rat middle cerebral artery occlusion model. Neurosurgery, 51, 1034–1041.

    PubMed  Google Scholar 

  91. Kitagawa, K., Matsumoto, M., Mabuchi, T., Yagita, Y., Ohtsuki, T., Hori, M., et al. (1998). Deficiency of intercellular adhesion molecule 1 attenuates microcirculatory disturbance and infarction size in focal cerebral ischemia. Journal of Cerebral Blood Flow and Metabolism, 18, 1336–1345.

    PubMed  CAS  Google Scholar 

  92. Khan, M., Jatana, M., Elango, C., Singh, P. A., Singh, A. K., & Singh, I. (2006). Cerebrovascular protection by various nitric oxide donors in rats after experimental stroke. Nitric Oxide, 15, 114–124.

    PubMed  CAS  Google Scholar 

  93. Vemuganti, R., Dempsey, R. J., & Bowen, K. K. (2004). Inhibition of intercellular adhesion molecule-1 protein expression by antisense oligonucleotides is neuroprotective after transient middle cerebral artery occlusion in rat. Stroke, 35, 179–184.

    PubMed  CAS  Google Scholar 

  94. Shyu, K. G., Chang, H., & Lin, C. C. (1997). Serum levels of intercellular adhesion molecule-1 and E-selectin in patients with acute ischaemic stroke. Journal of Neurology, 244, 90–93.

    PubMed  CAS  Google Scholar 

  95. Lindsberg, P. J., Carpen, O., Paetau, A., Karjalainen-Lindsberg, M. L., & Kaste, M. (1996). Endothelial ICAM-1 expression associated with inflammatory cell response in human ischemic stroke. Circulation, 94, 939–945.

    PubMed  CAS  Google Scholar 

  96. Enlimomab, A. S. T. (2001). Use of anti-ICAM-1 therapy in ischemic stroke: results of the Enlimomab Acute Stroke Trial. Neurology, 57, 1428–1434.

    Google Scholar 

  97. Vuorte, J., Lindsberg, P. J., Kaste, M., Meri, S., Jansson, S. E., Rothlein, R., et al. (1999). Anti-ICAM-1 monoclonal antibody R6.5 (Enlimomab) promotes activation of neutrophils in whole blood. Journal of Immunology, 162, 2353–2357.

    CAS  Google Scholar 

  98. Zhang, L. H., & Wei, E. Q. (2003). Neuroprotective effect of ONO-1078, a leukotriene receptor antagonist, on transient global cerebral ischemia in rats. Acta Pharmacologica Sinica, 24, 1241–1247.

    PubMed  CAS  Google Scholar 

  99. Justicia, C., Martin, A., Rojas, S., Gironella, M., Cervera, A., Panes, J., et al. (2006). Anti-VCAM-1 antibodies did not protect against ischemic damage either in rats or in mice. Journal of Cerebral Blood Flow and Metabolism, 26, 421–432.

    PubMed  CAS  Google Scholar 

  100. Bajetto, A., Bonavia, R., Barbero, S., Florio, T., & Schettini, G. (2001). Chemokines and their receptors in the central nervous system. Frontiers in Neuroendocrinology, 22, 147–184.

    PubMed  CAS  Google Scholar 

  101. Chen, Y., Hallenbeck, J. M., Ruetzler, C., Bol, D., Thomas, K., Berman, N. E., et al. (2003). Overexpression of monocyte chemoattractant protein 1 in the brain exacerbates ischemic brain injury and is associated with recruitment of inflammatory cells. Journal of Cerebral Blood Flow and Metabolism, 23, 748–755.

    PubMed  Google Scholar 

  102. Lambertsen, K. L., Biber, K., & Finsen, B. (2012). Inflammatory cytokines in experimental and human stroke. Journal of Cerebral Blood Flow and Metabolism, 32, 1677–1698.

    PubMed  CAS  Google Scholar 

  103. Wang, L., Li, Y., Chen, X., Chen, J., Gautam, S. C., Xu, Y., et al. (2002). MCP-1, MIP-1, IL-8 and ischemic cerebral tissue enhance human bone marrow stromal cell migration in interface culture. Hematology, 7, 113–117.

    PubMed  CAS  Google Scholar 

  104. Wang, L., Li, Y., Chen, J., Gautam, S. C., Zhang, Z., Lu, M., et al. (2002). Ischemic cerebral tissue and MCP-1 enhance rat bone marrow stromal cell migration in interface culture. Experimental Hematology, 30, 831–836.

    PubMed  CAS  Google Scholar 

  105. Lee, S. R., Kim, H. Y., Rogowska, J., Zhao, B. Q., Bhide, P., Parent, J. M., et al. (2006). Involvement of matrix metalloproteinase in neuroblast cell migration from the subventricular zone after stroke. Journal of Neuroscience, 26, 3491–3495.

    PubMed  CAS  Google Scholar 

  106. Zhao, B. Q., Wang, S., Kim, H. Y., Storrie, H., Rosen, B. R., Mooney, D. J., et al. (2006). Role of matrix metalloproteinases in delayed cortical responses after stroke. Nature Medicine, 12, 441–445.

    PubMed  CAS  Google Scholar 

  107. Rosenberg, G. A., Navratil, M., Barone, F., & Feuerstein, G. (1996). Proteolytic cascade enzymes increase in focal cerebral ischemia in rat. Journal of Cerebral Blood Flow and Metabolism, 16, 360–366.

    PubMed  CAS  Google Scholar 

  108. Clark, A. W., Krekoski, C. A., Bou, S. S., Chapman, K. R., & Edwards, D. R. (1997). Increased gelatinase A (MMP-2) and gelatinase B (MMP-9) activities in human brain after focal ischemia. Neuroscience Letters, 238, 53–56.

    PubMed  CAS  Google Scholar 

  109. Castellanos, M., Leira, R., Serena, J., Pumar, J. M., Lizasoain, I., & Castillo, J. (2003). Plasma metalloproteinase-9 concentration predicts hemorrhagic transformation in acute ischemic stroke. Stroke, 34, 40–46.

    PubMed  CAS  Google Scholar 

  110. Montaner, J., Alvarez-Sabin, J., Molina, C., Angles, A., Abilleira, S., & Arenillas, J. (2001). Matrix metalloproteinase expression after human cardioembolic stroke: temporal profile and relation to neurological impairment. Stroke, 32, 1759–1766.

    PubMed  CAS  Google Scholar 

  111. Asahi, M., Wang, X., Mori, T., Sumii, T., Jung, J. C., Moskowitz, M. A., et al. (2001). Effects of matrix metalloproteinase-9 gene knock-out on the proteolysis of blood–brain barrier and white matter components after cerebral ischemia. Journal of Neuroscience, 21, 7724–32.

    PubMed  CAS  Google Scholar 

  112. Tarkowski, E., Rosengren, L., Blomstrand, C., Wikkelso, C., Jensen, C., Ekholm, S., et al. (1997). Intrathecal release of pro- and anti-inflammatory cytokines during stroke. Clinical and Experimental Immunology, 110, 492–499.

    PubMed  CAS  Google Scholar 

  113. Pelidou, S. H., Kostulas, N., Matusevicius, D., Kivisakk, P., Kostulas, V., & Link, H. (1999). High levels of IL-10 secreting cells are present in blood in cerebrovascular diseases. European Journal of Neurology, 6, 437–442.

    PubMed  CAS  Google Scholar 

  114. Strle, K., Zhou, J. H., Shen, W. H., Broussard, S. R., Johnson, R. W., Freund, G. G., et al. (2001). Interleukin-10 in the brain. Critical Reviews in Immunology, 21, 427–449.

    PubMed  CAS  Google Scholar 

  115. Grilli, M., Barbieri, I., Basudev, H., Brusa, R., Casati, C., Lozza, G., et al. (2000). Interleukin-10 modulates neuronal threshold of vulnerability to ischaemic damage. European Journal of Neuroscience, 12, 2265–2272.

    PubMed  CAS  Google Scholar 

  116. Kim, J. S., Yoon, S. S., Kim, Y. H., & Ryu, J. S. (1996). Serial measurement of interleukin-6, transforming growth factor-beta, and S 100 protein in patients with acute stroke. Stroke, 27, 1553–1557.

    PubMed  CAS  Google Scholar 

  117. van Exel, E., Gussekloo, J., de Craen, A. J., Bootsma-van, D. W. A., Frolich, M., & Westendorp, R. G. (2002). Inflammation and stroke: the Leiden 85-Plus Study. Stroke, 33, 1135–1138.

    PubMed  Google Scholar 

  118. Buckwalter, M., & Wyss-Coray, T. (2004). Modelling neuroinflammatory phenotypes in vivo. Journal of Neuroinflammation, 1, 10.

    PubMed  Google Scholar 

  119. Klempt, N. D., Sirimanne, E., Gunn, A. J., Klempt, M., Singh, K., & Williams, C. (1992). Hypoxia–ischemia induces transforming growth factor beta 1 mRNA in the infant rat brain. Molecular Brain Research, 13, 93–101.

    PubMed  CAS  Google Scholar 

  120. Wienner, C., Gehrmann, J., Lindholm, D., Topper, R., Kreutzberg, G. W., & Hossmann, K. A. (1993). Expression of transforming growth factor-beta1 and interleukin-1 beta mRNA in rat brain following transient fore-brain ischemia. Acta Neuropathologica, 86, 439–46.

    Google Scholar 

  121. Johnston, R. E., Dillon-Carter, O., Freed, W. J., & Borlongan, C. V. (2001). Trophic factor secreting kidney cell lines: in vitro characterization and functional effects following transplantation in ischemic rats. Brain Research, 900, 268–276.

    PubMed  CAS  Google Scholar 

  122. Sun, H., Gong, S., Carmody, R. J., Hilliard, A., Li, L., Sun, J., et al. (2008). TIPE2, a negative regulator of innate and adaptive immunity that maintains immune homeostasis. Cell, 133, 415–426.

    PubMed  CAS  Google Scholar 

  123. Zhang, X., Wang, J., Fan, C., Li, H., Sun, H., Gong, S., et al. (2009). Crystal structure of TIPE2 provides insights into immune homeostasis. Nature Structural and Molecular Biology, 16, 89–90.

    PubMed  CAS  Google Scholar 

  124. Kooijman, R. (2006). Regulation of apoptosis by insulin-like growth factor (IGF)-I. Cytokine & Growth Factor Reviews, 17, 305–323.

    CAS  Google Scholar 

  125. Liu, X. F., Fawcett, J. R., Hanson, L. R., & Frey, W. H. (2004). The window of opportunity for treatment of focal cerebral ischemic damage with noninvasive intranasal insulin-like growth factor-I in rats. Journal of Stroke and Cerebrovascular Diseases, 13, 16–23.

    PubMed  Google Scholar 

  126. Liu, X. F., Fawcett, J. R., Thorne, R. G., DeFor, T. A., & Frey, W. H. (2001). Intranasal administration of insulin-like growth factor-I bypasses the blood–brain barrier and protects against focal cerebral ischemic damage. Journal of Neurological Sciences, 187, 91–97.

    CAS  Google Scholar 

  127. De, S. A., Brouns, R., Uyttenboogaart, M., De, R. S., Moens, M., Wilczak, N., et al. (2011). Insulin-like growth factor I serum levels influence ischemic stroke outcome. Stroke, 42, 2180–2185.

    Google Scholar 

  128. Bsibsi, M., Persoon-Deen, C., Verwer, R. W., Meeuwsen, S., Ravid, R., & Van, N. J. M. (2006). Toll-like receptor 3 on adult human astrocytes triggers production of neuroprotective mediators. Glia, 53, 688–695.

    PubMed  Google Scholar 

  129. Bsibsi, M., Ravid, R., Gveric, D., & Van Noort, J. M. (2002). Broad expression of Toll-like receptors in the human central nervous system. Journal of Neuropathology and Experimental Neurology, 61, 1013–1021.

    PubMed  CAS  Google Scholar 

  130. Singh, A. K., & Jiang, Y. (2004). How does peripheral lipopolysaccharide induce gene expression in the brain of rats? Toxicology, 201, 197–207.

    PubMed  CAS  Google Scholar 

  131. Jack, C. S., Arbour, N., Manusow, J., Montgrain, V., Blain, M., McCrea, E., et al. (2005). TLR signaling tailors innate immune responses in human microglia and astrocytes. Journal of Immunology, 175, 4320–4330.

    CAS  Google Scholar 

  132. Marsh, B. J., Williams-Karnesky, R. L., & Stenzel-Poore, M. P. (2009). Toll-like receptor signaling in endogenous neuroprotection and stroke. Neuroscience, 158, 1007–1020.

    PubMed  CAS  Google Scholar 

  133. Sakata, Y., Dong, J. W., Vallejo, J. G., Huang, C. H., Baker, J. S., Tracey, K. J., et al. (2007). Toll-like receptor 2 modulates left ventricular function following ischemia–reperfusion injury. American Journal of Physiology—Heart and Circulatory Physiology, 292, H503–H509.

    PubMed  CAS  Google Scholar 

  134. Shigeoka, A. A., Holscher, T. D., King, A. J., Hall, F. W., Kiosses, W. B., Tobias, P. S., et al. (2007). TLR2 is constitutively expressed within the kidney and participates in ischemic renal injury through both MyD88-dependent and -independent pathways. Journal of Immunology, 178, 6252–6258.

    CAS  Google Scholar 

  135. Cao, C. X., Yang, Q. W., Lv, F. L., Cui, J., Fu, H. B., & Wang, J. Z. (2007). Reduced cerebral ischemia–reperfusion injury in Toll-like receptor 4 deficient mice. Biochemical and Biophysical Research Communications, 353, 509–514.

    PubMed  CAS  Google Scholar 

  136. Lehnardt, S., Schott, E., Trimbuch, T., Laubisch, D., Krueger, C., Wulczyn, G., et al. (2008). A vicious cycle involving release of heat shock protein 60 from injured cells and activation of toll-like receptor 4 mediates neurodegeneration in the CNS. Journal of Neuroscience, 28, 2320–2331.

    PubMed  CAS  Google Scholar 

  137. Ziegler, G., Harhausen, D., Schepers, C., Hoffmann, O., Rohr, C., Prinz, V., et al. (2007). TLR2 has a detrimental role in mouse transient focal cerebral ischemia. Biochemical and Biophysical Research Communications, 359, 574–579.

    PubMed  CAS  Google Scholar 

  138. Caso, J. R., Pradillo, J. M., Hurtado, O., Lorenzo, P., Moro, M. A., & Lizasoain, I. (2007). Toll-like receptor 4 is involved in brain damage and inflammation after experimental stroke. Circulation, 115, 1599–1608.

    PubMed  CAS  Google Scholar 

  139. Hua, F., Ma, J., Ha, T., Xia, Y., Kelley, J., Williams, D. L., et al. (2007). Activation of Toll-like receptor 4 signaling contributes to hippocampal neuronal death following global cerebral ischemia/reperfusion. Journal of Neuroimmunology, 190, 101–111.

    PubMed  CAS  Google Scholar 

  140. Kinouchi, H., Sharp, F. R., Hill, M. P., Koistinaho, J., Sagar, S. M., & Chan, P. H. (1993). Induction of 70-kDa heat shock protein and hsp70 mRNA following transient focal cerebral ischemia in the rat. Journal of Cerebral Blood Flow and Metabolism, 13, 105–115.

    PubMed  CAS  Google Scholar 

  141. Faraco, G., Fossati, S., Bianchi, M. E., Patrone, M., Pedrazzi, M., Sparatore, B., et al. (2007). High mobility group box 1 protein is released by neural cells upon different stresses and worsens ischemic neurodegeneration in vitro and in vivo. Journal of Neurochemistry, 103, 590–603.

    PubMed  CAS  Google Scholar 

  142. Schneider, A., Martin-Villalba, A., Weih, F., Vogel, J., Wirth, T., & Schwaninger, M. (1999). NF-kappaB is activated and promotes cell death in focal cerebral ischemia. Nature Medicine, 5, 554–559.

    PubMed  CAS  Google Scholar 

  143. Liu, H., Xin, L., Chan, B. P. L., Teoh, R., Tang, B. L., & Tan, Y. H. (2002). Interferon beta administration confers a beneficial outcome in a rabbit model of thromboembolic cerebral ischemia. Neuroscience Letters, 327, 146–148.

    PubMed  CAS  Google Scholar 

  144. Veldhuis, W., Derksen, J., Floris, S., Vander, M. P., de Vries, H., Schepers, J., et al. (2003). Interferon-beta blocks infiltration of inflammatory cells and reduces infarct volume after ischemic stroke in the rat. Journal of Cerebral Blood Flow and Metabolism, 23, 1029–1039.

    PubMed  CAS  Google Scholar 

  145. Bogoyevitch, M. A., Gillespie-Brown, J., Ketterman, A. J., Fuller, S. J., Ben-Levy, R., Ashworth, A., et al. (1996). Stimulation of the stress-activated mitogen-activated protein kinase subfamilies in perfused heart. p38/RK mitogen-activated protein kinases and c-Jun N-terminal kinases are activated by ischemia/reperfusion. Circulation Research, 79, 162–173.

    PubMed  CAS  Google Scholar 

  146. Ferrell, J. E. (1996). Tripping the switch fantastic: how a protein kinase cascade can convert graded inputs into switch-like outputs. Trends in Biochemical Sciences, 21, 460–466.

    PubMed  CAS  Google Scholar 

  147. Davis, R. J. (1993). The mitogen-activated protein kinase signal transduction pathway. Journal of Biological Chemistry, 268, 14553–14556.

    PubMed  CAS  Google Scholar 

  148. Nithianandarajah-Jones, G. N., Wilm, B., Goldring, C. E., Müller, J., & Cross, M. J. (2012). ERK5: structure, regulation and function. Cellular Signalling, 24, 2187–2196.

    PubMed  CAS  Google Scholar 

  149. Lewis, T. S., Shapiro, P. S., & Ahn, N. G. (1998). Signal transduction through MAP kinase cascades. Advances in Cancer Research, 74, 49–139.

    PubMed  CAS  Google Scholar 

  150. Sutton, L. N., Clark, B. J., Norwood, C. R., Woodford, E. J., & Welsh, F. A. (1991). Global cerebral ischemia in piglets under conditions of mild and deep hypothermia. Stroke, 22, 1567–1573.

    PubMed  CAS  Google Scholar 

  151. Kamme, F., Camp, K., & Wieloch, T. (1995). Biphasic expression of the fos and jun families of transcription factors following transient forebrain ischaemia in the rat. Effect of hypothermia. European Journal of Neuroscience, 7, 2007–2016.

    PubMed  CAS  Google Scholar 

  152. Wang, Z. Q., Wu, D. C., Huang, F. P., & Yang, G. Y. (2004). Inhibition of MEK/ERK 1/2 pathway reduces pro-inflammatory cytokine interleukin-1 expression in focal cerebral ischemia. Brain Research, 996, 55–66.

    PubMed  CAS  Google Scholar 

  153. Barnes, P. J. (2010). Mechanisms and resistance in glucocorticoid control of inflammation. Journal of Steroid Biochemistry and Molecular Biology, 120, 6–85.

    Google Scholar 

  154. Woo, C. H., Massett, M. P., Shishido, T., Itoh, S., Ding, B., McClain, C., et al. (2006). ERK5 activation inhibits inflammatory responses via peroxisome proliferator-activated receptor delta (PPARdelta) stimulation. Journal of Biological Chemistry, 281, 32164–32174.

    PubMed  CAS  Google Scholar 

  155. Xia, Z., Dickens, M., Raingeaud, J., Davis, R. J., & Greenberg, M. E. (1995). Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science, 270, 1326–1331.

    PubMed  CAS  Google Scholar 

  156. Kawasaki, H., Morooka, T., Shimohama, S., Kimura, J., Hirano, T., Gotoh, Y., et al. (1997). Activation and involvement of p38 mitogen-activated protein kinase in glutamate-induced apoptosis in rat cerebellar granule cells. Journal of Biological Chemistry, 272, 18518–18521.

    PubMed  CAS  Google Scholar 

  157. Guan, Q. H., Pei, D. S., Zong, Y. Y., Xu, T. L., & Zhang, G. Y. (2006). Neuroprotection against ischemic brain injury by a small peptide inhibitor of c-Jun N-terminal kinase (JNK) via nuclear and non-nuclear pathways. Neuroscience, 139, 609–627.

    PubMed  CAS  Google Scholar 

  158. Sawe, N., Steinberg, G., & Zhao, H. (2008). Dual roles of the MAPK/ERK1/2 cell signaling pathway after stroke. Journal of Neuroscience Research, 86, 1659–1669.

    PubMed  CAS  Google Scholar 

  159. Benakis, C., Bonny, C., & Hirt, L. (2010). JNK inhibition and inflammation after cerebral ischemia. Brain, Behavior, and Immunity, 24, 800–811.

    PubMed  CAS  Google Scholar 

  160. Kaminska, B. (2005). MAPK signalling pathways as molecular targets for anti-inflammatory therapy—from molecular mechanisms to therapeutic benefits. Biochimica et Biophysica Acta, 1754, 253–262.

    PubMed  CAS  Google Scholar 

  161. Wang, L. W., Tu, Y. F., Huang, C. C., & Ho, C. J. (2012). JNK signaling is the shared pathway linking neuroinflammation, blood–brain barrier disruption, and oligodendroglial apoptosis in the white matter injury of the immature brain. Journal of Neuroinflammation, 17, 175.

    CAS  Google Scholar 

  162. Barone, F. C., Irving, E. A., & Ray, A. M. (2001). Inhibition of p38 mitogen-activated protein kinase provides neuroprotection in cerebral focal ischemia. Medicinal Research Reviews, 21, 129–145.

    PubMed  CAS  Google Scholar 

  163. Wang, H., Xu, L., Venkatachalam, S., Trzaskos, J. M., Friedman, S. M., Feuerstein, G. Z., et al. (2001). Differential regulation of IL-1beta and TNF-alpha RNA expression by MEK1 inhibitor after focal cerebral ischemia in mice. Biochemical and Biophysical Research Communications, 286, 869–874.

    PubMed  CAS  Google Scholar 

  164. Maddahi, A., & Edvinsson, L. (2008). Enhanced expressions of microvascular smooth muscle receptors after focal cerebral ischemia occur via the MAPK MEK/ERK pathway. BMC Neuroscience, 9, 85.

    PubMed  Google Scholar 

  165. Alessandrini, A., Namura, S., Moskowitz, M. A., & Bonventre, J. V. (1999). MEK1 protein kinase inhibition protects against damage resulting from focal cerebral ischemia. Proceedings of the National Academy of Sciences of the United States of America, 96, 12866–12869.

    PubMed  CAS  Google Scholar 

  166. Wang, X., Wang, H., Xu, L., Rozanski, D. J., Sugawara, T., Chan, P. H., et al. (2003). Significant neuroprotection against ischemic brain injury by inhibition of the MEK1 protein kinase in mice: exploration of potential mechanism associated with apoptosis. Journal of Pharmacology and Experimental Therapeutics, 304, 172–178.

    PubMed  CAS  Google Scholar 

  167. Roux, P. P., & Blenis, J. (2004). ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiology and Molecular Biology Reviews, 68, 320–344.

    PubMed  CAS  Google Scholar 

  168. Han, B. H., & Holtzman, D. M. (2000). BDNF protects the neonatal brain from hypoxic–ischemic injury in vivo via the ERK pathway. Journal of Neuroscience, 20, 5775–5781.

    PubMed  CAS  Google Scholar 

  169. Wang, R. M., Zhang, Q. G., Li, J., Yang, L. C., Yang, F., & Brann, D. W. (2009). The ERK5-MEF2C transcription factor pathway contributes to anti-apoptotic effect of cerebral ischemia preconditioning in the hippocampal CA1 region of rats. Brain Research, 1255, 32–41.

    PubMed  CAS  Google Scholar 

  170. Ridder, D. A., & Schwaninger, M. (2009). NF-kappaB signaling in cerebral ischemia. Neuroscience, 158, 995–1006.

    PubMed  CAS  Google Scholar 

  171. Napetschnig, J., & Wu, H. (2013). Molecular basis of NF-κB signaling. Annual Review of Biophysics, 42, 443–68.

    PubMed  CAS  Google Scholar 

  172. Khan, M., Sekhon, B., Giri, S., Jatana, M., Gilg, A. G., Ayasolla, K., et al. (2005). S-Nitrosoglutathione reduces inflammation and protects brain against focal cerebral ischemia in a rat model of experimental stroke. Journal of Cerebral Blood Flow and Metabolism, 25, 177–192.

    PubMed  CAS  Google Scholar 

  173. Hill, W. D., Hess, D. C., Carroll, J. E., Wakade, C. G., Howard, E. F., Chen, Q., et al. (2001). The NF-kappaB inhibitor diethyldithiocarbamate (DDTC) increases brain cell death in a transient middle cerebral artery occlusion model of ischemia. Brain Research Bulletin, 55, 375–86.

    PubMed  CAS  Google Scholar 

  174. Smith, C. J., Emsley, H. C., Vail, A., Georgiou, R. F., Rothwell, N. J., Tyrrell, P. J., et al. (2006). Variability of the systemic acute phase response after ischemic stroke. Journal of Neurological Sciences, 251, 77–81.

    CAS  Google Scholar 

  175. Palasik, W., Fiszer, U., Lechowicz, W., Czartoryska, B., Krzesiewicz, M., & Lugowska, A. (2005). Assessment of relations between clinical outcome of ischemic stroke and activity of inflammatory processes in the acute phase based on examination of selected parameters. European Neurology, 53, 188–193.

    PubMed  CAS  Google Scholar 

  176. McColl, B. W., Rothwell, N. J., & Allan, S. M. (2008). Systemic inflammation alters the kinetics of cerebrovascular tight junction disruption after experimental stroke in mice. Journal of Neuroscience, 28, 9451–9462.

    PubMed  CAS  Google Scholar 

  177. Dandona, P., Aljada, A., & Bandyopadhyay, A. (2004). Inflammation: the link between insulin resistance, obesity and diabetes. Trends in Immunology, 25, 4–7.

    PubMed  CAS  Google Scholar 

  178. Hansson, G. K., & Libby, P. (2006). The immune response in atherosclerosis: a double-edged sword. Nature Reviews Immunology, 6, 508–519.

    PubMed  CAS  Google Scholar 

  179. McGill, J. K., Gallagher, L., Carswell, H. V., Irving, E. A., Dominiczak, A. F., & Macrae, I. M. (2005). Impaired functional recovery after stroke in the stroke-prone spontaneously hypertensive rat. Stroke, 36, 135–141.

    PubMed  CAS  Google Scholar 

  180. Tureyen, K., Kapadia, R., Bowen, K. K., Satriotomo, I., Liang, J., Feinstein, D. L., et al. (2007). Peroxisome proliferator-activated receptor-gamma agonists induce neuroprotection following transient focal ischemia in normotensive, normoglycemic as well as hypertensive and type-2 diabetic rodents. Journal of Neurochemistry, 101, 41–56.

    PubMed  CAS  Google Scholar 

  181. Warlow, C., Sudlow, C., Dennis, M., Wardlaw, J., & Sandercock, P. (2003). Stroke. Lancet, 362, 1211–1224.

    PubMed  Google Scholar 

  182. Krakauer, J. W. (2007). The complex dynamics of stroke onset and progression. Current Opinion in Neurology, 20, 47–50.

    PubMed  Google Scholar 

  183. Amantea, D., Nappi, G., Bernardi, G., Bagetta, G., & Corasaniti, M. T. (2009). Post-ischemic brain damage: pathophysiology and role of inflammatory mediators. FEBS Journal, 276, 13–26.

    PubMed  CAS  Google Scholar 

  184. Kriz, J. (2006). Inflammation in ischemic brain injury: timing is important. Critical Reviews in Neurobiology, 18, 145–157.

    PubMed  CAS  Google Scholar 

  185. Ruehl, M. L., Orozco, J. A., Stoker, M. B., McDonagh, P. F., Coull, B. M., & Ritter, L. S. (2002). Protective effects of inhibiting both blood and vascular selectins after stroke and reperfusion. Neurological Research, 24, 226–232.

    PubMed  CAS  Google Scholar 

  186. Zhang, R. L., Chopp, M., Jiang, N., Tang, W. X., Prostak, J., Manning, A. M., et al. (1995). Anti-intercellular adhesion molecule-1 antibody reduces ischemic cell damage after transient but not permanent middle cerebral artery occlusion in the Wistar rat. Stroke, 26, 1438–1442.

    PubMed  CAS  Google Scholar 

  187. Chopp, M., Zhang, R. L., Chen, H., Li, Y., Jiang, N., & Rusche, J. R. (1994). Postischemic administration of an anti-Mac-1 antibody reduces ischemic cell damage after transient middle cerebral artery occlusion in rats. Stroke, 25, 869–875.

    PubMed  CAS  Google Scholar 

  188. Ma, M., Ma, Y., Yi, X., Guo, R., Zhu, W., Fan, X., et al. (2008). Intranasal delivery of transforming growth factor-beta1 in mice after stroke reduces infarct volume and increases neurogenesis in the subventricular zone. BMC Neuroscience, 10, 117.

    Google Scholar 

  189. Veldhoen, M., Hocking, R. J., Atkins, C. J., Locksley, R. M., & Stockinger, B. (2006). TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity, 24, 179–189.

    PubMed  CAS  Google Scholar 

  190. Taylor, A., Verhagen, J., Blaser, K., Akdis, M., & Akdis, C. A. (2006). Mechanisms of immune suppression by interleukin-10 and transforming growth factor-beta: the role of T regulatory cells. Immunology, 117, 433–442.

    PubMed  CAS  Google Scholar 

  191. Emsley, H. C., Smith, C. J., Georgiou, R. F., Vail, A., Hopkins, S. J., Rothwell, N. J., et al. (2005). Acute stroke investigators: a randomised phase II study of interleukin-1 receptor antagonist in acute stroke patients. Journal of Neurology, Neurosurgery, and Psychiatry, 76, 1366–1372.

    PubMed  CAS  Google Scholar 

  192. Krams, M., Lees, K. R., Hacke, W., Grieve, A. P., Orgogozo, J. M., & Ford, G. A. (2003). ASTIN Study Investigators. Acute Stroke Therapy by Inhibition of Neutrophils (ASTIN): an adaptive dose–response study of UK-279,276 in acute ischemic stroke. Stroke, 34, 2543–2548.

    PubMed  CAS  Google Scholar 

  193. Becker, K. J. (2002). Anti-leukocyte antibodies: LeukArrest (Hu23F2G) and Enlimomab (R6.5) in acute stroke. Current Medical Research and Opinion, 18, s18–22.

    PubMed  Google Scholar 

  194. Danton, G. H., & Dietrich, W. D. (2003). Inflammatory mechanisms after ischemia and stroke. Neuropathology and Experimental Neurology, 62, 127–136.

    CAS  Google Scholar 

  195. Minnerup, J., Sutherland, B. A., Buchan, A. M., & Kleinschnitz, C. (2012). Neuroprotection for stroke: current status and future perspectives. International Journal of Molecular Sciences, 13, 11753–11772.

    PubMed  CAS  Google Scholar 

  196. Mergenthaler, P., & Meisel, A. (2012). Do stroke models model stroke? Disease Models & Mechanisms, 5, 718–725.

    Google Scholar 

  197. Zaremba, J., & Losy, J. (2001). Early TNF-α levels correlate with ischemic stroke severity. Acta Neurologica Scandinavica, 104, 288–295.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the National Institutes of Health Grant HL087990 (Dr. Li) and by American Heart Association grant 0530166N (Dr. Li).

Conflict of Interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guohong Li.

Additional information

Associate Editor Jennifer L. Hall oversaw the review of this article

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, R., Liu, L., Zhang, S. et al. Role of Inflammation and Its Mediators in Acute Ischemic Stroke. J. of Cardiovasc. Trans. Res. 6, 834–851 (2013). https://doi.org/10.1007/s12265-013-9508-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-013-9508-6

Keywords

Navigation