Skip to main content

Advertisement

Log in

188Re-HYNIC-trastuzumab enhances the effect of apoptosis induced by trastuzumab in HER2-overexpressing breast cancer cells

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Purpose

The development of radioimmunotherapy has provided an impressive alternative approach in improving trastuzumab therapy. However, the mechanisms of trastuzumab and radiation treatment combined to increase therapeutic efficacy are poorly understood. Here, we try to examine the efficacy of cytotoxicity and apoptosis induction for 188Re-HYNIC-trastuzumab in cancer cell lines with various levels of Her2.

Materials and methods

Fluorescence flow cytometry was used to detect the alterations of apoptosis induction after 188Re-HYNIC-trastuzumab treatment in two breast cancer cell lines with different levels of HER2 (BT-474 and MCF-7) and a colorectal carcinoma cell line (HT-29) for control.

Results

Our results indicated that 188Re-HYNIC-trastuzumab led to cell death of breast cancer cells specifically in HER2 level-dependent and radioactivity dose-dependent fashions. In BT-474 cells, 370 kBq/ml of 188Re-HYNIC-trastuzumab enhanced the cytotoxicity to a level nearly 100-fold that of trastuzumab-alone treatment. The results also revealed that the mitochondria-dependent pathway attenuated irradiation-induced apoptosis in HER2-expressing breast cancer cells after 188Re-HYNIC-trastuzumab treatment. In contrast, only after 48 h of 188Re-HYNIC-trastuzumab treatment, BT-474 cells exhibited typical apoptotic changes, including exposure of phospholipid phosphatidylserine on the cell surface, or fragmented DNA formation, in a radioactivity dose-dependent manner.

Conclusion

Briefly, our study demonstrates that 188Re-labeled HYNIC-trastuzumab not only enhances cell death in a radioactivity dose-dependent fashion, but may also prolong the effects of apoptosis involved with the mitochondria-dependent pathway in HER2-overexpressing breast cancer cells. It is possible that the 188Re-HYNIC-trastuzumab treatment induced a second round of apoptosis to prolong the effects of cell kill in these cancer cells. These data revealed that 188Re-HYNIC-trastuzumab has the potential for use as a therapeutic radiopharmaceutical agent in HER2-overexpressing breast cancer cell treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. International Agency for research on cancer WHO. “World Cancer Report” (2003).

  2. Anderson BO, Distelhorst SR. Guidelines for international breast health and cancer control-implementation. Introduction. Cancer. 2008;113(8 Suppl):2215–6.

    Article  PubMed  Google Scholar 

  3. Anderson BO, Jakesz R. Breast cancer issues in developing countries: an overview of the Breast Health Global Initiative. World J Surg. 2008;32(12):2578–85.

    Article  PubMed  Google Scholar 

  4. Menard S, Tagliabue E, Campiglio M, Pupa SM. Role of HER2 gene overexpression in breast carcinoma. J Cell Physiol. 2000;182(2):150–62.

    Article  CAS  PubMed  Google Scholar 

  5. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987;235(4785):177–82.

    Article  CAS  PubMed  Google Scholar 

  6. Pauletti G, Dandekar S, Rong H, Ramos L, Peng H, Seshadri R, Slamon DJ. Assessment of methods for tissue-based detection of the HER-2/neu alteration in human breast cancer: a direct comparison of fluorescence in situ hybridization and immunohistochemistry. J Clin Oncol. 2000;18(21):3651–64.

    CAS  PubMed  Google Scholar 

  7. Song YJ, Qu CF, Rizvi SM, Li Y, Robertson G, Raja C, Morgenstern A, Apostolidis C, Perkins AC, Allen BJ. Cytotoxicity of PAI2, C595 and Herceptin vectors labeled with the alpha-emitting radioisotope Bismuth-213 for ovarian cancer cell monolayers and clusters. Cancer Lett. 2006;234(2):176–83.

    Article  CAS  PubMed  Google Scholar 

  8. Liang K, Lu Y, Jin W, Ang KK, Milas L, Fan Z. Sensitization of breast cancer cells to radiation by trastuzumab. Mol Cancer Ther. 2003;2(11):1113–20.

    CAS  PubMed  Google Scholar 

  9. Hudis CA. Trastuzumab—mechanism of action and use in clinical practice. N Engl J Med. 2007;357(1):39–51.

    Article  CAS  PubMed  Google Scholar 

  10. Santin AD, Bellone S, Roman JJ, McKenney JK, Pecorelli S. Trastuzumab treatment in patients with advanced or recurrent endometrial carcinoma overexpressing HER2/neu. Int J Gynaecol Obstet. 2008;102(2):128–31.

    Article  CAS  PubMed  Google Scholar 

  11. Fulda S. Tumor resistance to apoptosis. Int J Cancer. 2009;124(3):511–5.

    Article  CAS  PubMed  Google Scholar 

  12. Milella M, Trisciuoglio D, Bruno T, Ciuffreda L, Mottolese M, Cianciulli A, et al. Trastuzumab down-regulates Bcl-2 expression and potentiates apoptosis induction by Bcl-2/Bcl-XL bispecific antisense oligonucleotides in HER-2 gene-amplified breast cancer cells. Clin Cancer Res. 2004;10(22):7747–56.

    Article  CAS  PubMed  Google Scholar 

  13. Boerman OC, Koppe MJ, Postema EJ, Corstens FH, Oyen WJ. Radionuclide therapy of cancer with radiolabeled antibodies. Anticancer Agents Med Chem. 2007;7(3):335–43.

    Article  CAS  PubMed  Google Scholar 

  14. Li G, Wang Y, Huang K, Zhang H, Peng W, Zhang C. The experimental study on the radioimmunotherapy of the nasopharyngeal carcinoma overexpressing HER2/neu in nude mice model with intratumoral injection of 188Re-herceptin. Nucl Med Biol. 2005;32(1):59–65.

    Article  PubMed  Google Scholar 

  15. Zhang DY, Li Y, Rizvi SM, Qu C, Kearsley J, Allen BJ. Cytotoxicity of breast cancer cells overexpressing HER2/neu by 213Bi-Herceptin radioimmunoconjugate. Cancer Lett. 2005;218(2):181–90.

    Article  CAS  PubMed  Google Scholar 

  16. Li GP, Zhang YF, Wang YX. 188Re-labeled herceptin inhibits proliferation of breast cancer cell line SKBR-3 in vitro. Nan Fang Yi Ke Da Xue Xue Bao. 2006;26(10):1455–7.

    CAS  PubMed  Google Scholar 

  17. Costantini DL, Bateman K, McLarty K, Vallis KA, Reilly RM. Trastuzumab-resistant breast cancer cells remain sensitive to the auger electron-emitting radiotherapeutic agent 111In-NLS-trastuzumab and are radiosensitized by methotrexate. J Nucl Med. 2008;49(9):1498–505.

    Article  CAS  PubMed  Google Scholar 

  18. Chen KT, Lee TW, Lo JM. In vivo examination of (188)Re(I)-tricarbonyl-labeled trastuzumab to target HER2-overexpressing breast cancer. Nucl Med Biol. 2009;36(4):355–61.

    Article  CAS  PubMed  Google Scholar 

  19. Luo TY, Tang IC, Wu YL, Hsu KL, Liu SW, Kung HC, et al. Evaluating the potential of 188Re-SOCTA-trastuzumab as a new radioimmunoagent for breast cancer treatment. Nucl Med Biol. 2009;36(1):81–8.

    Article  CAS  PubMed  Google Scholar 

  20. Li L, Story M, Legerski RJ. Cellular responses to ionizing radiation damage. Int J Radiat Oncol Biol Phys. 2001;49(4):1157–62.

    Article  CAS  PubMed  Google Scholar 

  21. Friesen C, Lubatschofski A, Kotzerke J, Buchmann I, Reske SN, Debatin KM. Beta-irradiation used for systemic radioimmunotherapy induces apoptosis and activates apoptosis pathways in leukaemia cells. Eur J Nucl Med Mol Imaging. 2003;30(9):1251–61.

    Article  CAS  PubMed  Google Scholar 

  22. Blankenberg FG. Imaging the molecular signatures of apoptosis and injury with radiolabeled annexin V. Proc Am Thorac Soc. 2009;6(5):469–76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Tang Y, Scollard D, Chen P, Wang J, Holloway C, Reilly RM. Imaging of HER2/neu expression in BT-474 human breast cancer xenografts in athymic mice using [(99m)Tc]-HYNIC-trastuzumab (Herceptin) Fab fragments. Nucl Med Commun. 2005;26(5):427–32.

    Article  CAS  PubMed  Google Scholar 

  24. Abrams MJ, Juweid M, tenKate CI, Schwartz DA, Hauser MM, Gaul FE, et al. Technetium-99m-human polyclonal IgG radiolabeled via the hydrazino nicotinamide derivative for imaging focal sites of infection in rats. J Nucl Med. 1990;31(12):2022–8.

    CAS  PubMed  Google Scholar 

  25. Lindmo T, Boven E, Cuttitta F, Fedorko J, Bunn PA Jr. Determination of the immunoreactive fraction of radiolabeled monoclonal antibodies by linear extrapolation to binding at infinite antigen excess. J Immunol Methods. 1984;72(1):77–89.

    Article  CAS  PubMed  Google Scholar 

  26. Carlsson J, Nordgren H, Sjostrom J, Wester K, Villman K, Bengtsson NO, et al. HER2 expression in breast cancer primary tumours and corresponding metastases. Original data and literature review. Br J Cancer. 2004;90(12):2344–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Simeone AM, Broemeling LD, Rosenblum J, Tari AM. HER2/neu reduces the apoptotic effects of N-(4-hydroxyphenyl)retinamide (4-HPR) in breast cancer cells by decreasing nitric oxide production. Oncogene. 2003;22(43):6739–47.

    Article  CAS  PubMed  Google Scholar 

  28. Sharkey RM, Goldenberg DM. Targeted therapy of cancer: new prospects for antibodies and immunoconjugates. CA Cancer J Clin. 2006;56(4):226–43.

    Article  PubMed  Google Scholar 

  29. Tan AR, Swain SM. Ongoing adjuvant trials with trastuzumab in breast cancer. Semin Oncol. 2003;30(5 Suppl 16):54–64.

    Article  CAS  PubMed  Google Scholar 

  30. Friesen C, Glatting G, Koop B, Schwarz K, Morgenstern A, Apostolidis C, et al. Breaking chemoresistance and radioresistance with [213Bi]anti-CD45 antibodies in leukemia cells. Cancer Res. 2007;67(5):1950–8.

    Article  CAS  PubMed  Google Scholar 

  31. Eriksson D, Blomberg J, Lindgren T, Lofroth PO, Johansson L, Riklund K, et al. Iodine-131 induces mitotic catastrophes and activates apoptotic pathways in HeLa Hep2 cells. Cancer Biother Radiopharm. 2008;23(5):541–9.

    Article  CAS  PubMed  Google Scholar 

  32. Friesen C, Lubatschofski A, Glatting G, Debatin KM, Reske SN. Activation of intrinsic apoptotic pathway by Re-188 irradiation and paclitaxel in coronary artery smooth muscle cells. Q J Nucl Med Mol Imaging. 2008;52(3):289–95.

    CAS  PubMed  Google Scholar 

  33. Mirzaie-Joniani H, Eriksson D, Sheikholvaezin A, Johansson A, Lofroth PO, Johansson L, Stigbrand T. Apoptosis induced by low-dose and low-dose-rate radiation. Cancer. 2002;94(4 Suppl):1210–4.

    Article  PubMed  Google Scholar 

  34. Eriksson D, Joniani HM, Sheikholvaezin A, Lofroth PO, Johansson L, Riklund Ahlstrom K, et al. Combined low dose radio- and radioimmunotherapy of experimental HeLa Hep 2 tumours. Eur J Nucl Med Mol Imaging. 2003;30(6):895–906.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tsai-Yueh Luo or Po-Ching Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, TY., Cheng, PC., Chiang, PF. et al. 188Re-HYNIC-trastuzumab enhances the effect of apoptosis induced by trastuzumab in HER2-overexpressing breast cancer cells. Ann Nucl Med 29, 52–62 (2015). https://doi.org/10.1007/s12149-014-0908-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-014-0908-8

Keywords

Navigation