Skip to main content

Advertisement

Log in

Clinical significance of 18F-α-methyl tyrosine PET/CT for the detection of bone marrow invasion in patients with oral squamous cell carcinoma: comparison with 18F-FDG PET/CT and MRI

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Objective

L-3-[18F]-fluoro-α-methyl tyrosine (18F-FAMT) is an amino acid tracer for positron emission tomography/computed tomography (PET/CT) which specifically transported into cancer cells by L-type amino acid transporter 1 (LAT1). LAT1 overexpression in tumors is significantly correlated with cell proliferation and angiogenesis. 18F-FAMT PET/CT, fluorine-18-fluorodeoxyglucose (18F-FDG) PET/CT and magnetic resonance imaging (MRI) were compared for their diagnostic performance in the detection of bone marrow invasion in patients with oral squamous cell carcinoma (OSCC).

Methods

Twenty-seven patients with OSCC on the upper or lower alveolar ridge underwent staging by MRI, 18F-FDG PET/CT and 18F-FAMT PET/CT studies before surgery. Post-surgical pathologic examination was used as the standard to determine the final diagnoses. The possibility of bone marrow invasion on MRI, 18F-FDG PET/CT and 18F-FAMT PET/CT were usually graded retrospectively into five-point score. Sensitivity, specificity, accuracy, positive predictive value (PPV) and negative predictive value (NPV) were calculated according to the obtained scores.

Results

As the sensitivity of 18F-FDG PET/CT was highest (100 %) among that of MRI (95 %) and 18F-FAMT PET/CT (90 %), the specificity of 18F-FAMT PET/CT was highest (85.7 %) among that of MRI (57 %) and 18F-FDG PET/CT (14.3 %). The size of pathological tumor was accorded with that detected by 18F-FAMT PET/CT and was smaller than that detected by 18F-FDG PET/CT (P < 0.01). Significant difference was not found between 18F-FAMT PET tumor volume and pathological tumor volume.

Conclusions

18F-FAMT PET/CT was useful and more specific than MRI or 18F-FDG PET/CT in the detection of bone marrow invasion of OSCC and may contribute to minimize the extent of resection in oral surgery patient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cancer Research UK, International Agency for Research on Cancer. Cancer Stats: Cancer Worldwide. 2011.

  2. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127(12):2893–917.

    Article  PubMed  CAS  Google Scholar 

  3. Cooper JS, Porter K, Mallin K, Hoffman HT, Weber RS, Ang KK, et al. National Cancer Database report on cancer of the head and neck: 10-year update. Head Neck. 2009;31(6):748–58.

    Article  PubMed  Google Scholar 

  4. Pfister DG, Ang KK, Brizel DM, Burtness BA, Cmelak AJ, Colevas AD, et al. Head and neck cancers. J Natl Compr Canc Netw. 2011;9(6):596–650.

    PubMed  Google Scholar 

  5. Seitz O, Chambron-Pinho N, Middendorp M, Sader R, Mack M, Vogl TJ, et al. 18F-Fluorodeoxyglucose-PET/CT to evaluate tumor, nodal disease, and gross tumor volume of oropharyngeal and oral cavity cancer: comparison with MR imaging and validation with surgical specimen. Neuroradiology. 2009;51(10):677–86.

    Article  PubMed  Google Scholar 

  6. Kaira K, Oriuchi N, Otani Y, Shimizu K, Tanaka S, Imai H, et al. Fluorine-18-alpha-methyltyrosine positron emission tomography for diagnosis and staging of lung cancer: a clinicopathologic study. Clin Canc Res. 2007;13(21):6369–78.

    Article  CAS  Google Scholar 

  7. Isoda A, Higuchi T, Nakano S, Arisaka Y, Kaira K, Kamio T, et al. (18)F-FAMT in patients with multiple myeloma: clinical utility compared to (18)F-FDG. Ann Nucl Med. 2012;26(10):811–6.

    Google Scholar 

  8. Sun T, Tang G, Tian H, Wang X, Chen X, Chen Z, et al. Radiosynthesis of 1-[18F]fluoroethyl-L-tryptophan as a novel potential amino acid PET tracer. Appl Radiat Isot. 2012;70(4):676–80.

    Article  PubMed  CAS  Google Scholar 

  9. Inoue T, Koyama K, Oriuchi N, Alyafei S, Yuan Z, Suzuki H, et al. Detection of malignant tumors: whole-body PET with fluorine 18 α-methyl tyrosine versus FDG-preliminary study. Radiology. 2001;220(1):54–62.

    PubMed  CAS  Google Scholar 

  10. Tomiyoshi K, Amed K, Sarwar M, Higuchi T, Inoue T, Endo K, et al. Synthesis of isomers of 18F-labelled amino acid radiopharmaceutical: Position 2- and 3-L-18F-α-methyltyrosine using a separation and purification system. Nucl Med Commun. 1997;18:169–75.

    Article  PubMed  CAS  Google Scholar 

  11. Inoue T, Tomiyoshi K, Higuchi T, Ahmed K, Sarwar M, Aoyagi K, et al. Biodistribution studies on L-3-[Fluorine-18] fluoro-α-methyl tyrosine: a potential tumor detecting agent. J Nucl Med. 1998;39:663–7.

    PubMed  CAS  Google Scholar 

  12. Inoue T, Shibasaki T, Oriuchi N, Aoyagi K, Tomiyoshi K, Amano S, et al. 18F α-methyl Tyrosine PET studies in patients with brain tumors. J Nucl Med. 1999;40:399–405.

    PubMed  CAS  Google Scholar 

  13. Wiriyasermkul P, Nagamori S, Tominaga H, Oriuchi N, Kaira K, Nakao H, et al. Transport of 3-fluoro-L-alpha-methyl-tyrosine by tumor-upregulated L-type amino acid transporter 1: a cause of the tumor uptake in PET. J Nucl Med. 2012;53(8):1253–61.

    Article  PubMed  CAS  Google Scholar 

  14. Ord RA, Sarmadi M, Papadimitrou J. A comparison of segmental and marginal bony resection for oral squamous cell carcinoma involving the mandible. J Oral Maxillofac Surg. 1997;55(5):470–7. discussion 7–8.

    Article  PubMed  CAS  Google Scholar 

  15. Wax MK, Bascom DA, Myers LL. Marginal mandibulectomy vs segmental mandibulectomy: indications and controversies. Arch Otolaryngol Head Neck Surg. 2002;128(5):600–3.

    PubMed  Google Scholar 

  16. Rajesh A, Khan A, Kendall C, Hayter J, Cherryman G. Can magnetic resonance imaging replace single photon computed tomography and computed tomography in detecting bony invasion in patients with oral squamous cell carcinoma? Br J Oral Maxillofac Surg 2008;46(1):11–4. doi: 10.1016/j.bjoms.2007.08.024.

  17. Sato N, Inoue T, Tomiyoshi K, Aoki J, Oriuchi N, Takahashi A, et al. Gliomatosis cerebri evaluated by 18F alpha-methyl tyrosine positron-emission tomography. Neuroradiology. 2003;45(10):700–7. doi:10.1007/s00234-003-1057-2.

    Article  PubMed  CAS  Google Scholar 

  18. Abd El-Hafez YG, Chen CC, Ng SH, Lin CY, Wang HM, Chan SC, et al. Comparison of PET/CT and MRI for the detection of bone marrow invasion in patients with squamous cell carcinoma of the oral cavity. Oral Oncol. 2011;47(4):288–95. doi:10.1016/j.oraloncology.2011.02.010.

    Article  PubMed  Google Scholar 

  19. Moule RN, Kayani I, Prior T, Lemon C, Goodchild K, Sanghera B, et al. Adaptive 18fluoro-2-deoxyglucose positron emission tomography/computed tomography-based target volume delineation in radiotherapy planning of head and neck cancer. Clin Oncol (R Coll Radiol). 2011;23(5):364–71. doi:10.1016/j.clon.2010.11.001.

    Article  CAS  Google Scholar 

  20. Miyakubo M, Oriuchi N, Tsushima Y, Higuchi T, Koyama K, Arai K, et al. Diagnosis of maxillofacial tumor with L-3-[18f]-fluoro-alpha-methyltyrosine (FMT) PET: a comparative study with FDG-PET. Ann Nucl Med. 2007;21(2):129–35.

    Article  PubMed  CAS  Google Scholar 

  21. Imaizumi A, Yoshino N, Yamada I, Nagumo K, Amagasa T, Omura K, et al. A potential pitfall of MR imaging for assessing mandibular invasion of squamous cell carcinoma in the oral cavity. AJNR Am J Neuroradiol. 2006;27(1):114–22.

    PubMed  CAS  Google Scholar 

  22. van den Brekel MW, Runne RW, Smeele LE, Tiwari RM, Snow GB, Castelijns JA. Assessment of tumour invasion into the mandible: the value of different imaging techniques. Eur Radiol. 1998;8(9):1552–7.

    Article  PubMed  Google Scholar 

  23. Pirotte B, Goldman S, Dewitte O, Massager N, Wikler D, Lefranc F, et al. Integrated positron emission tomography and magnetic resonance imaging-guided resection of brain tumors: a report of 103 consecutive procedures. J Neurosurg. 2006;104(2):238–53. doi:10.3171/jns.2006.104.2.238.

    Article  PubMed  Google Scholar 

  24. Hong R, Halama J, Bova D, Sethi A, Emami B. Correlation of PET standard uptake value and CT window-level threshold for target delineation in CT-based radiation treatment planning. Int J Radiat Oncol Biol Phys. 2007;67(3):720–6. doi:10.1016/j.ijrobp.2006.09.039.

    Article  PubMed  Google Scholar 

  25. Wong RJ. Current status of FDG-PET for head and neck cancer. J Surg Oncol. 2008;97:649–52.

    Article  PubMed  Google Scholar 

  26. Xu G, Li J, Zuo X, Li C. Comparison of whole body positron emission tomography (PET)/PET-computed tomography and conventional anatomic imaging for detecting malignancies in patients with head and neck cancer: a meta-analysis. Laryngoscope. 2012;122:1974–8.

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mai Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, M., Higuchi, T., Arisaka, Y. et al. Clinical significance of 18F-α-methyl tyrosine PET/CT for the detection of bone marrow invasion in patients with oral squamous cell carcinoma: comparison with 18F-FDG PET/CT and MRI. Ann Nucl Med 27, 423–430 (2013). https://doi.org/10.1007/s12149-013-0701-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-013-0701-0

Keywords

Navigation