Skip to main content

Advertisement

Log in

Direct comparison of radiation dosimetry of six PET tracers using human whole-body imaging and murine biodistribution studies

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Objective

We investigated the whole-body biodistributions and radiation dosimetry of five 11C-labeled and one 18F-labeled radiotracers in human subjects, and compared the results to those obtained from murine biodistribution studies.

Methods

The radiotracers investigated were 11C-SA4503, 11C-MPDX, 11C-TMSX, 11C-CHIBA-1001, 11C-4DST, and 18F-FBPA. Dynamic whole-body positron emission tomography (PET) was performed in three human subjects after a single bolus injection of each radiotracer. Emission scans were collected in two-dimensional mode in five bed positions. Regions of interest were placed over organs identified in reconstructed PET images. The OLINDA program was used to estimate radiation doses from the number of disintegrations of these source organs. These results were compared with the predicted human radiation doses on the basis of biodistribution data obtained from mice by dissection.

Results

The ratios of estimated effective doses from the human-derived data to those from the mouse-derived data ranged from 0.86 to 1.88. The critical organs that received the highest absorbed doses in the human- and mouse-derived studies differed for two of the six radiotracers. The differences between the human- and mouse-derived dosimetry involved not only the species differences, including faster systemic circulation of mice and differences in the metabolism, but also measurement methodologies.

Conclusions

Although the mouse-derived effective doses were roughly comparable to the human-derived doses in most cases, considerable differences were found for critical organ dose estimates and pharmacokinetics in certain cases. Whole-body imaging for investigation of radiation dosimetry is desirable for the initial clinical evaluation of new PET probes prior to their application in subsequent clinical investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Zanotti-Fregonara P, Innis RB. Suggested pathway to assess radiation safety of 11C-labeled PET tracers for first-in-human studies. Eur J Nucl Med Mol Imaging. 2012;39:544–7.

    Article  PubMed  Google Scholar 

  2. van der Aart J, Hallett WA, Rabiner EA, Passchier J, Comley RA. Radiation dose estimates for carbon-11-labelled PET tracers. Nucl Med Biol. 2012;39:305–14.

    Article  PubMed  Google Scholar 

  3. Santens P, De Vos F, Thierens H, et al. Biodistribution and dosimetry of carbon-11-methoxyprogabidic acid, a possible ligand for GABA-receptors in the brain. J Nucl Med. 1998;39:307–10.

    PubMed  CAS  Google Scholar 

  4. Bencherif B, Endres CJ, Musachio JL, et al. PET imaging of brain acetylcholinesterase using [11C]CP-126,998, a brain selective enzyme inhibitor. Synapse. 2002;45:1–9.

    Article  PubMed  CAS  Google Scholar 

  5. Tolvanen T, Yli-Kerttula T, Ujula T, et al. Biodistribution and radiation dosimetry of [11C]choline: a comparison between rat and human data. Eur J Nucl Med Mol Imaging. 2010;37:874–83.

    Article  PubMed  CAS  Google Scholar 

  6. Sakata M, Wu J, Toyohara J, et al. Biodistribution and radiation dosimetry of the α7 nicotinic acetylcholine receptor ligand [11C]CHIBA-1001 in humans. Nucl Med Biol. 2011;38:443–8.

    Article  PubMed  CAS  Google Scholar 

  7. Toyohara J, Nariai T, Sakata M, et al. Whole-body distribution and brain tumor imaging with 11C–4DST: a pilot study. J Nucl Med. 2011;52:1322–8.

    Article  PubMed  Google Scholar 

  8. Kawamura K, Ishiwata K, Shimada Y, et al. Preclinical evaluation of [11C]SA4503: radiation dosimetry, in vivo selectivity and PET imaging of sigma1 receptors in the cat brain. Ann Nucl Med. 2000;14:285–92.

    Article  PubMed  CAS  Google Scholar 

  9. Ishiwata K, Nariai T, Kimura Y, et al. Preclinical studies on [11C]MPDX for mapping adenosine A1 receptors by positron emission tomography. Ann Nucl Med. 2002;16:377–82.

    Article  PubMed  CAS  Google Scholar 

  10. Ishiwata K, Wang WF, Kimura Y, Kawamura K, Ishii K. Preclinical studies on [11C]TMSX for mapping adenosine A2A receptors by positron emission tomography. Ann Nucl Med. 2003;17:205–11.

    Article  PubMed  CAS  Google Scholar 

  11. Ishiwata K, Ido T, Mejia AA, Ichihashi M, Mishima Y. Synthesis and radiation dosimetry of 4-borono-2-[18F]fluoro-d, l-phenylalanine: a target compound for PET and boron neutron capture therapy. Appl Radiat Isot. 1991;42:325–8.

    Article  CAS  Google Scholar 

  12. Kawamura K, Ishiwata K, Tajima H, et al. In vivo evaluation of [11C]SA4503 as a PET ligand for mapping CNS sigma1 receptors. Nucl Med Biol. 2000;27:255–61.

    Article  PubMed  CAS  Google Scholar 

  13. Ishiwata K, Noguchi J, Wakabayashi S, et al. 11C-labeled KF18446: a potential central nervous system adenosine A2a receptor ligand. J Nucl Med. 2000;41:345–54.

    PubMed  CAS  Google Scholar 

  14. Toyohara J, Sakata M, Wu J, et al. Preclinical and the first clinical studies on [11C]CHIBA-1001 for mapping α7 nicotinic receptors by positron emission tomography. Ann Nucl Med. 2009;23:301–9.

    Article  PubMed  CAS  Google Scholar 

  15. Ishiwata K, Ishii S, Senda M, Tsuchiya Y, Tomimoto K. Electrophilic synthesis of 6-[18F]fluoro-L-DOPA: use of 4-O-pivaloyl-L-DOPA as a suitable precursor for routine production. Appl Radiat Isot. 1993;44:755–9.

    Article  CAS  Google Scholar 

  16. Fujiwara T, Watanuki S, Yamamoto S, et al. Performance evaluation of a large axial field-of-view PET scanner: SET-2400 W. Ann Nucl Med. 1997;11:307–13.

    Article  PubMed  CAS  Google Scholar 

  17. Meikle SR, Bailey DL, Hooper PK, et al. Simultaneous emission and transmission measurements for attenuation correction in whole-body PET. J Nucl Med. 1995;36:1680–8.

    PubMed  CAS  Google Scholar 

  18. Stabin MG, Sparks RB, Crowe E. OLINDA/EXM: the second generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med. 2005;46:1023–7.

    PubMed  Google Scholar 

  19. Kirschner AS, Ice RD, Beierwaltes WH. Radiation dosimetry of 131I–19-iodocholesterol: the pitfalls of using tissue concentration data—reply. J Nucl Med. 1975;16:248–9.

    CAS  Google Scholar 

  20. International Commission on Radiological Protection. ICRP Publication 60: 1990 recommendations of the International Commission on Radiological Protection. Ann ICRP. 1991;21:493–502.

    Google Scholar 

  21. Hirvonen J, Roivainen A, Virta J, Helin S, Nagren K, Rinne JO. Human biodistribution and radiation dosimetry of 11C-(R)-PK11195, the prototypic PET ligand to image inflammation. Eur J Nucl Med Mol Imaging. 2010;37:606–12.

    Article  PubMed  CAS  Google Scholar 

  22. Pauleit D, Floeth F, Herzog H, et al. Whole-body distribution and dosimetry of O-(2-[18F]fluoroethyl)-l-tyrosine. Eur J Nucl Med Mol Imaging. 2003;30:519–24.

    Article  PubMed  CAS  Google Scholar 

  23. Brown WD, Oakes TR, DeJesus OT, et al. Fluorine-18-fluoro-L-DOPA dosimetry with carbidopa pretreatment. J Nucl Med. 1998;39:1884–91.

    PubMed  CAS  Google Scholar 

  24. Deloar HM, Fujiwara T, Shidahara M, et al. Estimation of absorbed dose for 2-[F-18]fluoro-2-deoxy-d-glucose using whole-body positron emission tomography and magnetic resonance imaging. Eur J Nucl Med. 1998;25:565–74.

    Article  PubMed  CAS  Google Scholar 

  25. Mejia AA, Nakamura T, Itoh M, et al. Absorbed dose estimates in positron emission tomography studies based on the administration of 18F-labeled radiopharmaceuticals. J Radiat Res. 1991;32:243–61.

    Article  PubMed  CAS  Google Scholar 

  26. Lin JH. Species similarities and differences in pharmacokinetics. Drug Metab Dispos. 1995;23:1008–21.

    PubMed  CAS  Google Scholar 

  27. Toyohara J, Okada M, Toramatsu C, Suzuki K, Irie T. Feasibility studies of 4′-[methyl-11C]thiothymidine as a tumor proliferation imaging agent in mice. Nucl Med Biol. 2008;35:67–74.

    Article  PubMed  CAS  Google Scholar 

  28. Chiu SH, Huskey SW. Species differences in N-glucuronidation. Drug Metab Dispos. 1998;26:838–47.

    PubMed  CAS  Google Scholar 

  29. Luoto P, Laitinen I, Suilamo S, Någren K, Roivainen A. Human dosimetry of carbon-11 labeled N-butan-2-yl-1-(2-chlorophenyl)-N-methylisoquinoline-3-carboxamide extrapolated from whole-body distribution kinetics and radiometabolism in rats. Mol Imaging Biol. 2010;12:435–42.

    Article  PubMed  Google Scholar 

  30. Harvey J, Firnau G, Garnett ES. Estimation of the radiation dose in man due to 6-[18F]fluoro-L-dopa. J Nucl Med. 1985;26:931–5.

    PubMed  CAS  Google Scholar 

  31. Tang G, Wang M, Tang X, Luo L, Gan M. Pharmacokinetics and radiation dosimetry estimation of O-(2-[18F]fluoroethyl)-l-tyrosine as oncologic PET tracer. Appl Radiat Isot. 2003;58:219–25.

    Article  PubMed  CAS  Google Scholar 

  32. International Commission on Radiological Protection. ICRP Publication 80. Recalculated dose data for 19 frequently used radiopharmaceuticals from ICRP Publication 53. Ann ICRP. 1998;28:47–83.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants-in-Aid for Scientific Research (C) No. 19591665 (Tadashi Nariai), (B) No. 22390241 (Jun Toyohara), and (B) No. 20390334 (Kiichi Ishiwata) from the Japan Society for the Promotion of Science, and a Grant from the National Center for Global Health and Medicine (Jun Toyohara, Tadashi Nariai, and Kiichi Ishiwata).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muneyuki Sakata.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakata, M., Oda, K., Toyohara, J. et al. Direct comparison of radiation dosimetry of six PET tracers using human whole-body imaging and murine biodistribution studies. Ann Nucl Med 27, 285–296 (2013). https://doi.org/10.1007/s12149-013-0685-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-013-0685-9

Keywords

Navigation