Skip to main content
Log in

The agreement of left ventricular function parameters between 99mTc-tetrofosmin gated myocardial SPECT and gated myocardial MRI

  • Original article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Objective

The aim is to compare and evaluate the agreement of quantification of left ventricular functional parameters obtained by two different methods, 99mTc-tetrofosmin gated myocardial perfusion SPECT (MPS) and cardiac magnetic resonance imaging (CMR).

Methods

Ten healthy male volunteers participated. Gated MPS data were acquired using 32 frames, which were also combined into 16- and 8-frame data set for the investigation. Gated CMR data were acquired using 8, 16 and 32-frame for the different sets. All examinations were conducted in resting and at exercise conditions. Quantitative measurements of end-diastolic volume (EDV), end-systolic volume (ESV), left ventricular ejection fraction (LVEF), peak ejection rate (PER), peak filling rate (PFR) and time to peak filling (TTPF) were done for each study, respectively. Finally, we evaluated the concordance of parameters between gated MPS and gated CMR by % difference and Bland–Altman plot analysis.

Results

LVEF showed favorable concordance in both rest and exercise conditions (% differences were around 10%). PER, PFR and TTPF also showed good concordances in rest conditions, under 32-frame gated collections particularly (% differences were around 10%). In exercise conditions, although the concordances were relatively good, certain variances were noted (% differences were around 20–25%). Regarding left ventricular volumes, the concordance were worse in both conditions (% differences were around 30–40%).

Conclusions

In quantifying of left ventricular function parameter, gated CMR provides similar quantitative values comparing with gated MPS except for ventricular volumes in rest conditions. In contrast, there were certain variations except for LVEF in exercised examinations. When we follow patients by the same cardiac parameters with CMR and MPS, using parameters across the two modalities proved to be possible under rest condition. However, it is limited at exercise condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gimelli A, Landi P, Marraccini P, Sicari R, Frumento P, L’Abbate A, et al. Left ventricular ejection fraction measurements: accuracy and prognostic implications in a large population of patients with known or suspected ischemic heart disease. Int J Cardiovasc Imaging. 2008;24:793–801.

    Article  PubMed  Google Scholar 

  2. Usui Y, Chikamori T, Nakajima K, Hida S, Yamashina A, Nishimura T. Prognostic value of post-ischemic stunning as assessed by gated myocardial perfusion single-photon emission computed tomography: a subanalysis of the J-ACCESS study. Circ J. 2010;74:1591–9.

    Article  PubMed  Google Scholar 

  3. Bosch X, Theroux P. Left ventricular ejection fraction to predict early mortality in patients with non-ST-segment elevation acute coronary syndromes. Am Heart J. 2005;150:215–20.

    Article  PubMed  Google Scholar 

  4. Curtis JP, Sokol SI, Wang Y, Rathore SS, Ko DT, Jadbabaie F, et al. The association of left ventricular ejection fraction, mortality, and cause of death in stable outpatients with heart failure. J Am Coll Cardiol. 2003;42:736–42.

    Article  PubMed  Google Scholar 

  5. Yuda S, Fang ZY, Marwick TH. Association of severe coronary stenosis with subclinical left ventricular dysfunction in the absence of infarction. J Am Soc Echocardiogr. 2003;16:1163–70.

    Article  PubMed  Google Scholar 

  6. Matsumura Y, Elliott PM, Virdee MS, Sorajja P, Doi Y, McKenna WJ. Left ventricular diastolic function assessed using Doppler tissue imaging in patients with hypertrophic cardiomyopathy: relation to symptoms and exercise capacity. Heart. 2002;87:247–51.

    Article  PubMed  CAS  Google Scholar 

  7. Boyer JK, Thanigaraj S, Schechtman KB, Perez JE. Prevalence of ventricular diastolic dysfunction in asymptomatic, normotensive patients with diabetes mellitus. Am J Cardiol. 2004;93:870–5.

    Article  PubMed  Google Scholar 

  8. Yoshino T, Nakae I, Matsumoto T, Mitsunami K, Horie M. Relationship between exercise capacity and cardiac diastolic function assessed by time–volume curve from 16-frame gated myocardial perfusion SPECT. Ann Nucl Med. 2010;24:469–76.

    Article  PubMed  Google Scholar 

  9. von Bibra H, St John Sutton M. Diastolic dysfunction in diabetes and the metabolic syndrome: promising potential for diagnosis and prognosis. Diabetologia. 2010;53:1033–45.

    Article  Google Scholar 

  10. Akincioglu C, Berman DS, Nishina H, Kavanagh PB, Slomka PJ, Abidov A, et al. Assessment of diastolic function using 16-frame 99mTc-sestamibi gated myocardial perfusion SPECT: normal values. J Nucl Med. 2005;46:1102–8.

    PubMed  Google Scholar 

  11. Yamada H, Goh PP, Sun JP, Odabashian J, Garcia MJ, Thomas JD, et al. Prevalence of left ventricular diastolic dysfunction by Doppler echocardiography: clinical application of the Canadian consensus guidelines. J Am Soc Echocardiogr. 2002;15:1238–44.

    Article  PubMed  Google Scholar 

  12. Naqvi TZ. Diastolic function assessment incorporating new techniques in Doppler echocardiography. Rev Cardiovasc Med. 2003;4:81–99.

    PubMed  Google Scholar 

  13. Sharifi M, Khedkar N, Peller P, Martinez C, Sorkin R, Lakier J. First pass Tc-99 m MIBI ventriculography in the assessment of left ventricular diastolic function. A comparison with Doppler echocardiography. Clin Nucl Med. 1996;21:679–84.

    Article  PubMed  CAS  Google Scholar 

  14. Germano G, Kavanagh PB, Su HT, Mazzanti M, Kiat H, Hachamovitch R, et al. Automatic reorientation of three-dimensional, transaxial myocardial perfusion SPECT images. J Nucl Med. 1995;36:1107–14.

    PubMed  CAS  Google Scholar 

  15. Germano G, Kiat H, Kavanagh PB, Moriel M, Mazzanti M, Su HT, et al. Automatic quantification of ejection fraction from gated myocardial perfusion SPECT. J Nucl Med. 1995;36:2138–47.

    PubMed  CAS  Google Scholar 

  16. Faber TL, Cooke CD, Folks RD, Vansant JP, Nichols KJ, DePuey EG, et al. Left ventricular function and perfusion from gated SPECT perfusion images: an integrated method. J Nucl Med. 1999;40:650–9.

    PubMed  CAS  Google Scholar 

  17. Nakata T, Katagiri Y, Odawara Y, Eguchi M, Kuroda M, Tsuchihashi K, et al. Two- and three-dimensional assessments of myocardial perfusion and function by using technetium-99m sestamibi gated SPECT with a combination of count- and image-based techniques. J Nucl Cardiol. 2000;7:623–32.

    Article  PubMed  CAS  Google Scholar 

  18. Nagamachi S, Wakamatsu H, Fujita S, Nishii R, Kamimura K, Kiyohara S, et al. Assessment of diastolic function using 16-frame 201Tl gated myocardial perfusion SPECT: a comparative study of QGS2 and pFAST2. Ann Nucl Med. 2008;22:115–22.

    Article  PubMed  Google Scholar 

  19. Matsuo S, Sato Y, Nakae I, Masuda D, Matsumoto N, Horie M. Evaluation of cardiac resynchronization therapy in drug-resistant dilated-phase hypertrophic cardiomyopathy by means of Tc-99m sestamibi ECG-gated SPECT. Ann Nucl Med. 2006;20:643–7.

    Article  PubMed  Google Scholar 

  20. Salerno M. Multi-modality imaging of diastolic function. J Nucl Cardiol. 2010;17:316–27.

    Article  PubMed  Google Scholar 

  21. Barkhausen J, Ruehm SG, Goyen M, Buck T, Laub G, Debatin JF. MR evaluation of ventricular function: true fast imaging with steady-state precession versus fast low-angle shot cine MR imaging: feasibility study. Radiology. 2001;219:264–9.

    PubMed  CAS  Google Scholar 

  22. Carr JC, Simonetti O, Bundy J, Li D, Pereles S, Finn JP. Cine MR angiography of the heart with segmented true fast imaging with steady-state precession. Radiology. 2001;219:828–34.

    PubMed  CAS  Google Scholar 

  23. Bollache E, Redheuil A, Clement-Guinaudeau S, Defrance C, Perdrix L, Ladouceur M, et al. Automated left ventricular diastolic function evaluation from phase-contrast cardiovascular magnetic resonance and comparison with Doppler echocardiography. J Cardiovasc Magn Reson. 2010;12:63.

    Article  PubMed  Google Scholar 

  24. Brandts A, Westenberg JJ, Versluis MJ, Kroft LJ, Smith NB, Webb AG, et al. Quantitative assessment of left ventricular function in humans at 7 T. Magn Reson Med. 2010;64:1471–7.

    Article  PubMed  Google Scholar 

  25. Brandts A, Bertini M, van Dijk EJ, Delgado V, Marsan NA, van der Geest RJ, et al. Left ventricular diastolic function assessment from three-dimensional three-directional velocity-encoded MRI with retrospective valve tracking. J Magn Reson Imaging. 2011;33:312–9.

    Article  PubMed  Google Scholar 

  26. Daneshvar D, Wei J, Tolstrup K, Thomson LE, Shufelt C, Merz CN. Diastolic dysfunction: improved understanding using emerging imaging techniques. Am Heart J. 2010;160:394–404.

    Article  PubMed  Google Scholar 

  27. Ichikawa Y, Sakuma H, Kitagawa K, Ishida N, Takeda K, Uemura S, et al. Evaluation of left ventricular volumes and ejection fraction using fast steady-state cine MR imaging: comparison with left ventricular angiography. J Cardiovasc Magn Reson. 2003;5:333–42.

    Article  PubMed  Google Scholar 

  28. Baer FM, Theissen P, Schneider CA, Voth E, Sechtem U, Schicha H, et al. Dobutamine magnetic resonance imaging predicts contractile recovery of chronically dysfunctional myocardium after successful revascularization. J Am Coll Cardiol. 1998;31:1040–8.

    Article  PubMed  CAS  Google Scholar 

  29. Al-Saadi N, Nagel E, Gross M, Bornstedt A, Schnackenburg B, Klein C, et al. Noninvasive detection of myocardial ischemia from perfusion reserve based on cardiovascular magnetic resonance. Circulation. 2000;101:1379–83.

    PubMed  CAS  Google Scholar 

  30. Weber OM, Martin AJ, Higgins CB. Whole-heart steady-state free precession coronary artery magnetic resonance angiography. Magn Reson Med. 2003;50:1223–8.

    Article  PubMed  Google Scholar 

  31. Lee VS, Resnick D, Tiu SS, Sanger JJ, Nazzaro CA, Israel GM, et al. MR imaging evaluation of myocardial viability in the setting of equivocal SPECT results with (99m)Tc sestamibi. Radiology. 2004;230:191–7.

    Article  PubMed  Google Scholar 

  32. Ishida M, Kato S, Sakuma H. Cardiac MRI in ischemic heart disease. Circ J. 2009;73:1577–88.

    Article  PubMed  Google Scholar 

  33. Dulce MC, Mostbeck GH, Friese KK, Caputo GR, Higgins CB. Quantification of the left ventricular volumes and function with cine MR imaging: comparison of geometric models with three-dimensional data. Radiology. 1993;188:371–6.

    PubMed  CAS  Google Scholar 

  34. Schaefer WM, Lipke CS, Standke D, Kuhl HP, Nowak B, Kaiser HJ, et al. Quantification of left ventricular volumes and ejection fraction from gated 99mTc-MIBI SPECT: MRI validation and comparison of the Emory Cardiac Tool Box with QGS and 4D-MSPECT. J Nucl Med. 2005;46:1256–63.

    PubMed  Google Scholar 

  35. Fenchel M, Helber U, Kramer U, Stauder NI, Franow A, Claussen CD, et al. Detection of regional myocardial perfusion deficit using rest and stress perfusion MRI: a feasibility study. AJR Am J Roentgenol. 2005;185:627–35.

    PubMed  Google Scholar 

  36. Hedeer F, Palmer J, Arheden H, Ugander M. Gated myocardial perfusion SPECT underestimates left ventricular volumes and shows high variability compared to cardiac magnetic resonance imaging–a comparison of four different commercial automated software packages. BMC Med Imaging. 2010;10:10.

    Article  PubMed  Google Scholar 

  37. Mesquita CT, Pessoa MC, Vasconcelos PP, Oliveira Junior AC, Dohmann HF, Reis AG, et al. Ventricular function following coronary artery bypass grafting: comparison between gated SPECT and cardiac magnetic resonance imaging. Arq Bras Cardiol. 2009;92:327–33, 344–50, 357–63.

    Google Scholar 

  38. Demir H, Tan YZ, Kozdag G, Isgoren S, Anik Y, Ural D, et al. Comparison of gated SPECT, echocardiography and cardiac magnetic resonance imaging for the assessment of left ventricular ejection fraction and volumes. Ann Saudi Med. 2007;27:415–20.

    Article  PubMed  Google Scholar 

  39. Miller S, Simonetti OP, Carr J, Kramer U, Finn JP. MR Imaging of the heart with cine true fast imaging with steady-state precession: influence of spatial and temporal resolutions on left ventricular functional parameters. Radiology. 2002;223:263–9.

    Article  PubMed  Google Scholar 

  40. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1:307–10.

    Article  PubMed  CAS  Google Scholar 

  41. Navare SM, Wackers FJ, Liu YH. Comparison of 16-frame and 8-frame gated SPET imaging for determination of left ventricular volumes and ejection fraction. Eur J Nucl Med Mol Imaging. 2003;30:1330–7.

    Article  PubMed  Google Scholar 

  42. Manrique A, Koning R, Cribier A, Vera P. Effect of temporal sampling on evaluation of left ventricular ejection fraction by means of thallium-201 gated SPET: comparison of 16- and 8-interval gating, with reference to equilibrium radionuclide angiography. Eur J Nucl Med. 2000;27:694–9.

    Article  PubMed  CAS  Google Scholar 

  43. Lipke CS, Kuhl HP, Nowak B, Kaiser HJ, Reinartz P, Koch KC, et al. Validation of 4D-MSPECT and QGS for quantification of left ventricular volumes and ejection fraction from gated 99mTc-MIBI SPET: comparison with cardiac magnetic resonance imaging. Eur J Nucl Med Mol Imaging. 2004;31:482–90.

    Article  PubMed  Google Scholar 

  44. Nakajima K. Normal values for nuclear cardiology: Japanese databases for myocardial perfusion, fatty acid and sympathetic imaging and left ventricular function. Ann Nucl Med. 2010;24:125–35.

    Article  PubMed  Google Scholar 

  45. Kikkawa M, Nakamura T, Sakamoto K, Sugihara H, Azuma A, Sawada T, et al. Assessment of left ventricular diastolic function from quantitative electrocardiographic-gated 99mTc-tetrofosmin myocardial SPET. Eur J Nucl Med. 2001;28:593–601.

    Article  PubMed  CAS  Google Scholar 

  46. Lee KJ, Southee AE, Bautovich GJ, Freedman B, McLaughlin AF, Rossleigh MA, et al. Normalised radionuclide measures of left ventricular diastolic function. Eur J Nucl Med. 1989;15:123–7.

    Article  PubMed  CAS  Google Scholar 

  47. Muntinga HJ, van den Berg F, Knol HR, Niemeyer MG, Blanksma PK, Louwes H, et al. Normal values and reproducibility of left ventricular filling parameters by radionuclide angiography. Int J Card Imaging. 1997;13:165–71 (discussion 73).

    Google Scholar 

  48. Paul AK, Kusuoka H, Hasegawa S, Yonezawa T, Makikawa M, Nishimura T. Prolonged diastolic dysfunction following exercise induced ischaemia: a gated myocardial perfusion SPECT study. Nucl Med Commun. 2002;23:1129–36.

    Article  PubMed  CAS  Google Scholar 

  49. Kumita S, Cho K, Nakajo H, Toba M, Uwamori M, Mizumura S, et al. Assessment of left ventricular diastolic function with electrocardiography-gated myocardial perfusion SPECT: comparison with multigated equilibrium radionuclide angiography. J Nucl Cardiol. 2001;8:568–74.

    Article  PubMed  CAS  Google Scholar 

  50. Knesaurek K, King MA, Glick SJ, Penney BC. Investigation of causes of geometric distortion in 180 degrees and 360 degrees angular sampling in SPECT. J Nucl Med. 1989;30:1666–75.

    PubMed  CAS  Google Scholar 

  51. Nakajima K, Okuda K, Kawano M, Matsuo S, Slomka P, Germano G, et al. The importance of population-specific normal database for quantification of myocardial ischemia: comparison between Japanese 360 and 180-degree databases and a US database. J Nucl Cardiol. 2009;16:422–30.

    Article  PubMed  Google Scholar 

  52. Nakajima K, Kumita S, Ishida Y, Momose M, Hashimoto J, Morita K, et al. Creation and characterization of Japanese standards for myocardial perfusion SPECT: database from the Japanese Society of Nuclear Medicine Working Group. Ann Nucl Med. 2007;21:505–11.

    Article  PubMed  Google Scholar 

  53. Buechel RR, Herzog BA, Husmann L, Burger IA, Pazhenkottil AP, Treyer V, et al. Ultrafast nuclear myocardial perfusion imaging on a new gamma camera with semiconductor detector technique: first clinical validation. Eur J Nucl Med Mol Imaging. 2010;37:773–8.

    Article  PubMed  Google Scholar 

  54. Nkoulou R, Pazhenkottil AP, Kuest SM, Ghadri JR, Wolfrum M, Husmann L, et al. Semiconductor detectors allow low-dose-low-dose 1-day SPECT myocardial perfusion imaging. J Nucl Med. 2011;52:1204–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeki Nagamachi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 32 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuroiwa, Y., Nagamachi, S., Miyati, T. et al. The agreement of left ventricular function parameters between 99mTc-tetrofosmin gated myocardial SPECT and gated myocardial MRI. Ann Nucl Med 26, 147–163 (2012). https://doi.org/10.1007/s12149-011-0546-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-011-0546-3

Keywords

Navigation