Skip to main content
Log in

Clinical implications of the body surface area method versus partition model dosimetry for yttrium-90 radioembolization using resin microspheres: a technical review

  • Review article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Yttrium-90 (Y-90) radioembolization is becoming established as an effective therapeutic modality for inoperable liver tumors. For resin microspheres, the ‘body surface area (BSA)’ method and the partition model can both be used for Y-90 activity calculation. The BSA method is semi-empirical, but more commonly used due its simplicity. The partition model is more accurate, scientifically sound and personalized, but less popular due to its complexity. This article provides a technical comparison of both methods with an emphasis on its clinical implications. Future dosimetric techniques for Y-90 radioembolization based on emerging technologies are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Salem R, Lewandowski RJ, Sato KT, Atassi B, Ryu RK, Ibrahim S, et al. Technical aspects of radioembolization with 90Y microspheres. Tech Vasc Interv Radiol. 2007;10:12–29.

    Article  PubMed  Google Scholar 

  2. Ahmadzadehfar H, Biersack HJ, Ezziddin S. Radioembolization of liver tumors with yttrium-90 microspheres. Semin Nucl Med. 2010;40:105–21.

    Article  PubMed  Google Scholar 

  3. Wang SC, Bester L, Burnes JP, Clouston JE, Hugh TJ, Little AF, et al. Clinical care and technical recommendations for 90yttrium microsphere treatment of liver cancer. J Med Imaging Radiat Oncol. 2010;54:178–87.

    Article  PubMed  Google Scholar 

  4. Lau WY, Kennedy AS, Kim YH, Lai HK, Lee RC, Leung TW, et al. Patient selection and activity planning guide for selective internal radiotherapy with yttrium-90 resin microspheres. Int J Radiat Oncol Biol Phys. 2010 [Epub ahead of print].

  5. Salem R, Lewandowski RJ, Mulcahy MF, Riaz A, Ryu RK, Ibrahim S, et al. Radioembolization for hepatocellular carcinoma using Yttrium-90 microspheres: a comprehensive report of long-term outcomes. Gastroenterology. 2010;138:52–64.

    Article  PubMed  CAS  Google Scholar 

  6. Riaz A, Lewandowski RJ, Kulik LM, Mulcahy MF, Sato KT, Ryu RK, et al. Complications following radioembolization with yttrium-90 microspheres: a comprehensive literature review. J Vasc Interv Radiol. 2009;20:1121–30.

    Article  PubMed  Google Scholar 

  7. Sirtex Medical Limited, Lane Cove, New South Wales, Australia. Sirtex Medical training manual (version TRN-US-03, http://Sirtex.com). Undated.

  8. Lau WY, Leung TW, Ho S, Chan M, Leung NW, Lin J, et al. Diagnostic pharmaco-scintigraphy with hepatic intra-arterial technetium-99m macroaggregated albumin in the determination of tumour to non-tumour uptake ratio in hepatocellular carcinoma. Br J Radiol. 1994;67:136–9.

    Article  PubMed  CAS  Google Scholar 

  9. Burton MA, Gray BN, Klemp PF, Kelleher DK, Hardy N. Selective internal radiation therapy: distribution of radiation in the liver. Eur J Cancer Clin Oncol. 1989;25:1487–91.

    Article  PubMed  CAS  Google Scholar 

  10. Fox RA, Klemp PF, Egan G, Mina LL, Burton MA, Gray BN. Dose distribution following selective internal radiation therapy. Int J Radiat Oncol Biol Phys. 1991;21:463–7.

    Article  PubMed  CAS  Google Scholar 

  11. Ho S, Lau WY, Leung TW, Chan M, Chan KW, Lee WY, et al. Tumor-to-normal uptake ratio of 90Y microspheres in hepatic cancer assessed with 99Tcm macroaggregated albumin. Br J Radiol. 1997;70:823–8.

    PubMed  CAS  Google Scholar 

  12. Kennedy AS, Nutting C, Coldwell D, Gaiser J, Drachenberg C. Pathologic response and microdosimetry of (90)Y microspheres in man: review of four explanted whole livers. Int J Radiat Oncol Biol Phys. 2004;1(60):1552–630.

    Google Scholar 

  13. Gates VL, Esmail AA, Marshall K, Spies S, Salem R. Internal pair production of 90Y permits hepatic localization of microspheres using routine PET: proof of concept. J Nucl Med. 2011;52:72–6.

    Article  PubMed  Google Scholar 

  14. Flamen P, Vanderlinden B, Delatte P, Ghanem G, Ameye L, Van Den Eynde M, et al. Multimodality imaging can predict the metabolic response of unresectable colorectal liver metastases to radioembolization therapy with Yttrium-90 labeled resin microspheres. Phys Med Biol. 2008;21(53):6591–603.

    Article  Google Scholar 

  15. Cremonesi M, Ferrari M, Bartolomei M, Orsi F, Bonomo G, Aricò D, et al. Radioembolisation with 90Y-microspheres: dosimetric and radiobiological investigation for multi-cycle treatment. Eur J Nucl Med Mol Imaging. 2008;35:2088–96.

    Article  PubMed  CAS  Google Scholar 

  16. Riaz A, Gates VL, Atassi B, Lewandowski RJ, Mulcahy MF, Ryu RK, et al. Radiation segmentectomy: a novel approach to increase safety and efficacy of radioembolization. Int J Radiat Oncol Biol Phys. 2011;1(79):163–71.

    Google Scholar 

  17. Ho S, Lau WY, Leung TW, Chan M, Johnson PJ, Li AK. Clinical evaluation of the partition model for estimating radiation doses from yttrium-90 microspheres in the treatment of hepatic cancer. Eur J Nucl Med. 1997;24:293–8.

    PubMed  CAS  Google Scholar 

  18. Campbell JM, Wong CO, Muzik O, Marples B, Joiner M, Burmeister J. Early dose response to yttrium-90 microsphere treatment of metastatic liver cancer by a patient-specific method using single photon emission computed tomography and positron emission tomography. Int J Radiat Oncol Biol Phys. 2009;1(74):313–20.

    Google Scholar 

  19. Hendlisz A, Van den Eynde M, Peeters M, Maleux G, Lambert B, Vannoote J, et al. Phase III trial comparing protracted intravenous fluorouracil infusion alone or with yttrium-90 resin microspheres radioembolization for liver-limited metastatic colorectal cancer refractory to standard chemotherapy. J Clin Oncol. 2010;10(28):3687–94.

    Article  Google Scholar 

  20. Flux G, Bardies M, Chiesa C, Monsieurs M, Savolainen S, Strand SE, et al. Clinical radionuclide therapy dosimetry: the quest for the “Holy Gray”. Eur J Nucl Med Mol Imaging. 2007;34:1699–700.

    Article  PubMed  Google Scholar 

  21. Gurney H. Developing a new framework for dose calculation. J Clin Oncol. 2006;1(24):1489–90.

    Article  Google Scholar 

  22. Ho S, Lau WY, Leung TW, Chan M, Ngar YK, Johnson PJ, et al. Partition model for estimating radiation doses from yttrium-90 microspheres in treating hepatic tumours. Eur J Nucl Med. 1996;23:947–52.

    Article  PubMed  CAS  Google Scholar 

  23. Fox RA, Klemp PF, Egan G, Mina LL, Burton MA, Gray BN. Dose distribution following selective internal radiation therapy. Int J Radiat Oncol Biol Phys. 1991;21:463–7.

    Article  PubMed  CAS  Google Scholar 

  24. Campbell AM, Bailey IH, Burton MA. Analysis of the distribution of intra-arterial microspheres in human liver following hepatic yttrium-90 microsphere therapy. Phys Med Biol. 2000;45:1023–33.

    Article  PubMed  CAS  Google Scholar 

  25. Campbell AM, Bailey IH, Burton MA. Tumour dosimetry in human liver following hepatic yttrium-90 microsphere therapy. Phys Med Biol. 2001;46:487–98.

    Article  PubMed  CAS  Google Scholar 

  26. Salem R, Lewandowski RJ, Gates VL, Nutting CW, Murthy R, Rose SC, et al. Research reporting standards for radioembolization of hepatic malignancies. J Vasc Interv Radiol. 2011;22:265–78.

    Article  PubMed  Google Scholar 

  27. Sarfaraz M, Kennedy AS, Lodge MA, Li XA, Wu X, Yu CX. Radiation absorbed dose distribution in a patient treated with yttrium-90 microspheres for hepatocellular carcinoma. Med Phys. 2004;31:2449–53.

    Article  PubMed  Google Scholar 

  28. Gulec SA, Sztejnberg ML, Siegel JA, Jevremovic T, Stabin M. Hepatic structural dosimetry in (90)Y microsphere treatment: a Monte Carlo modeling approach based on lobular microanatomy. J Nucl Med. 2010;51:301–10.

    Article  PubMed  Google Scholar 

  29. Avila-Rodriguez MA, Selwyn RG, Hampel JA, Thomadsen BR, Dejesus OT, Converse AK, et al. Positron-emitting resin microspheres as surrogates of 90Y SIR-Spheres: a radiolabeling and stability study. Nucl Med Biol. 2007;34:585–90.

    Article  PubMed  CAS  Google Scholar 

  30. Selwyn RG, Avila-Rodriguez MA, Converse AK, Hampel JA, Jaskowiak CJ, McDermott JC, et al. 18F-labeled resin microspheres as surrogates for 90Y resin microspheres used in the treatment of hepatic tumors: a radiolabeling and PET validation study. Phys Med Biol. 2007;21(52):7397–408.

    Article  Google Scholar 

  31. Schiller E, Bergmann R, Pietzsch J, Noll B, Sterger A, Johannsen B, et al. Yttrium-86-labelled human serum albumin microspheres: relation of surface structure with in vivo stability. Nucl Med Biol. 2008;35:227–32.

    Article  PubMed  CAS  Google Scholar 

  32. Maziere B, Loc’h C, Steinling M, Comar D. Stable labelling of serum albumin microspheres with gallium-68. Int J Radiat Appl Instrum A. 1986;37:360–1.

    Article  CAS  Google Scholar 

  33. Rhee TK, Omary RA, Gates V, Mounajjed T, Larson AC, Barakat O, et al. The effect of catheter-directed CT angiography on yttrium-90 radioembolization treatment of hepatocellular carcinoma. J Vasc Interv Radiol. 2005;16:1085–9.

    PubMed  Google Scholar 

  34. Kennedy AS, Kleinstreuer C, Basciano CA, Dezarn WA. Computer modeling of yttrium-90-microsphere transport in the hepatic arterial tree to improve clinical outcomes. Int J Radiat Oncol Biol Phys. 2010;1(76):631–7.

    Article  Google Scholar 

  35. Basciano CA, Kleinstreuer C, Kennedy AS, Dezarn WA, Childress E. Computer modeling of controlled microsphere release and targeting in a representative hepatic artery system. Ann Biomed Eng. 2010;38:1862–79.

    Article  PubMed  Google Scholar 

  36. Kleinstreuer, C. Methods and devices for targeted injection of radioactive microspheres. U.S. Patent Application 61/127,889, July 28, 2009, NC State University, Raleigh, NC.

  37. Lhommel R, van Elmbt L, Goffette P, Van den Eynde M, Jamar F, Pauwels S, et al. Feasibility of 90Y TOF PET-based dosimetry in liver metastasis therapy using SIR-Spheres. Eur J Nucl Med Mol Imaging. 2010;37:1654–62.

    Article  PubMed  Google Scholar 

  38. Lhommel R, Goffette P, Van den Eynde M, Jamar F, Pauwels S, Bilbao JI, et al. Yttrium-90 TOF PET scan demonstrates high-resolution biodistribution after liver SIRT. Eur J Nucl Med Mol Imaging. 2009;36:1696.

    Article  PubMed  Google Scholar 

  39. Blanchard RJ, Lafave JW, Kim YS, Frye CS, Ritchie WP, Perry JF Jr. Treatment of patients with advanced cancer utilizing Y90 microspheres. Cancer. 1965;18:375–80.

    Article  PubMed  CAS  Google Scholar 

  40. MacKie S, de Silva S, Aslan P, Ladd L, Houang M, Cade D, et al. Super selective radio embolization of the porcine kidney with 90yttrium resin microspheres: a feasibility, safety and dose ranging study. J Urol. 2011;185:285–90.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yung Hsiang Kao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kao, Y.H., Tan, E.H., Ng, C.E. et al. Clinical implications of the body surface area method versus partition model dosimetry for yttrium-90 radioembolization using resin microspheres: a technical review. Ann Nucl Med 25, 455–461 (2011). https://doi.org/10.1007/s12149-011-0499-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-011-0499-6

Keywords

Navigation