Skip to main content
Log in

Comprehensive network map of interferon gamma signaling

  • Nuts and Bolts
  • Published:
Journal of Cell Communication and Signaling Aims and scope

Abstract

Interferon gamma (IFN-γ), is a cytokine, which is an important regulator of host defense system by mediating both innate and adaptive immune responses. IFN-γ signaling is primarily associated with inflammation and cell-mediated immune responses. IFN-γ is also represented as antitumor cytokine which facilitates immunosurveillance in tumor cells. In addition, IFN-γ mediated signaling also elicits pro-tumorigenic transformations and promotes tumor progression. Impact of IFN-γ signaling in mammalian cells has been widely studied which indicate that IFN-γ orchestrates distinct cellular functions including immunomodulation, leukocyte trafficking, apoptosis, anti-microbial, and both anti- and pro-tumorigenic role. However, a detailed network of IFN-γ signaling pathway is currently lacking. Therefore, we systematically curated the literature information pertaining to IFN-γ signaling and develop a comprehensive signaling network to facilitate better understanding of IFN-γ mediated signaling. A total of 124 proteins were catalogued that were experimentally proven to be involved in IFN-γ signaling cascade. These 124 proteins were found to participate in 81 protein-protein interactions, 94 post-translational modifications, 20 translocation events, 54 activation/inhibiton reactions. Further, 236 differential expressed genes were also documented in IFN-γ mediated signaling. IFN-γ signaling pathway is made freely available to scientific audience through NetPath at (http://www.netpath.org/pathways?path_id=NetPath_32). We believe that documentation of reactions pertaining to IFN-γ signaling and development of pathway map will facilitate further research in IFN-γ associated human diseases including cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

IFN-γ /IFNG:

Interferon gamma

IFNGR1:

IFN-γ receptor subunit 1

IFNGR2:

IFN-γ receptor subunit 2

STAT:

Signal transducer and activator of transcription protein

ISGs:

Interferon stimulated genes

PPI:

Protein-protein interaction

SBML:

Systems Biology Markup Language

BioPAX:

Biological Pathway Exchange

PTM:

Post-translational modification

HPRD:

Human Protein Reference Database

PSI-MI:

Proteomics Standards Initiative for Molecular Interaction

References

  • Ahmed CM, Johnson HM (2006) IFN-gamma and its receptor subunit IFNGR1 are recruited to the IFN-gamma-activated sequence element at the promoter site of IFN-gamma-activated genes: evidence of transactivational activity in IFNGR1. J Immunol 177:315–321

    Article  CAS  Google Scholar 

  • Almawi WY, Hess DA, Rieder MJ (1998) Multiplicity of glucocorticoid action in inhibiting allograft rejection. Cell Transplant 7:511–523

    Article  CAS  Google Scholar 

  • Beatty GL, Paterson Y (2001) Regulation of tumor growth by IFN-gamma in cancer immunotherapy. Immunol Res 24:201–210

    Article  CAS  Google Scholar 

  • Blouin CM, Hamon Y, Gonnord P, Boularan C, Kagan J, Viaris de Lesegno C, Ruez R, Mailfert S, Bertaux N, Loew D, Wunder C, Johannes L, Vogt G, Contreras FX, Marguet D, Casanova JL, Gales C, He HT, Lamaze C (2016) Glycosylation-dependent IFN-gammaR partitioning in lipid and actin Nanodomains is critical for JAK activation. Cell 166:920–934

    Article  CAS  Google Scholar 

  • Boeckmann B, Bairoch A, Apweiler R, Blatter MC, Estreicher A, Gasteiger E, Martin MJ, Michoud K, O'Donovan C, Phan I, Pilbout S, Schneider M (2003) The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res 31:365–370

    Article  CAS  Google Scholar 

  • Bukowski RM, Rayman P, Molto L, Tannenbaum CS, Olencki T, Peereboom D, Tubbs R, McLain D, Budd GT, Griffin T, Novick A, Hamilton TA, Finke J (1999) Interferon-gamma and CXC chemokine induction by interleukin 12 in renal cell carcinoma. Clin Cancer Res 5:2780–2789

    CAS  PubMed  Google Scholar 

  • Chapgier A, Boisson-Dupuis S, Jouanguy E, Vogt G, Feinberg J, Prochnicka-Chalufour A, Casrouge A, Yang K, Soudais C, Fieschi C, Santos OF, Bustamante J, Picard C, de Beaucoudrey L, Emile JF, Arkwright PD, Schreiber RD, Rolinck-Werninghaus C, Rosen-Wolff A, Magdorf K, Roesler J, Casanova JL (2006) Novel STAT1 alleles in otherwise healthy patients with mycobacterial disease. PLoS Genet 2:e131

    Article  Google Scholar 

  • Chatterjee O, Patil K, Sahu A, Gopalakrishnan L, Mol P, Advani J, Mukherjee S, Christopher R, Prasad TS (2016) An overview of the oxytocin-oxytocin receptor signaling network. J Cell Commun Signal 10:355–360

    Article  Google Scholar 

  • Chen J, Feng Y, Lu L, Wang H, Dai L, Li Y, Zhang P (2012) Interferon-gamma-induced PD-L1 surface expression on human oral squamous carcinoma via PKD2 signal pathway. Immunobiology 217:385–393

    Article  CAS  Google Scholar 

  • de Weerd NA, Nguyen T (2012) The interferons and their receptors--distribution and regulation. Immunol Cell Biol 90:483–491

    Article  Google Scholar 

  • Decker T, Kovarik P, Meinke A (1997) GAS elements: a few nucleotides with a major impact on cytokine-induced gene expression. J Interf Cytokine Res 17:121–134

    Article  CAS  Google Scholar 

  • Demir E, Cary MP, Paley S, Fukuda K, Lemer C, Vastrik I, Wu G, D'Eustachio P, Schaefer C, Luciano J, Schacherer F, Martinez-Flores I, Hu Z, Jimenez-Jacinto V, Joshi-Tope G, Kandasamy K, Lopez-Fuentes AC, Mi H, Pichler E, Rodchenkov I, Splendiani A, Tkachev S, Zucker J, Gopinath G, Rajasimha H, Ramakrishnan R, Shah I, Syed M, Anwar N, Babur O, Blinov M, Brauner E, Corwin D, Donaldson S, Gibbons F, Goldberg R, Hornbeck P, Luna A, Murray-Rust P, Neumann E, Ruebenacker O, Samwald M, van Iersel M, Wimalaratne S, Allen K, Braun B, Whirl-Carrillo M, Cheung KH, Dahlquist K, Finney A, Gillespie M, Glass E, Gong L, Haw R, Honig M, Hubaut O, Kane D, Krupa S, Kutmon M, Leonard J, Marks D, Merberg D, Petri V, Pico A, Ravenscroft D, Ren L, Shah N, Sunshine M, Tang R, Whaley R, Letovksy S, Buetow KH, Rzhetsky A, Schachter V, Sobral BS, Dogrusoz U, McWeeney S, Aladjem M, Birney E, Collado-Vides J, Goto S, Hucka M, Le Novere N, Maltsev N, Pandey A, Thomas P, Wingender E, Karp PD, Sander C, Bader GD (2010) The BioPAX community standard for pathway data sharing. Nat Biotechnol 28:935–942

    Article  CAS  Google Scholar 

  • Detjen KM, Farwig K, Welzel M, Wiedenmann B, Rosewicz S (2001) Interferon gamma inhibits growth of human pancreatic carcinoma cells via caspase-1 dependent induction of apoptosis. Gut 49:251–262

    Article  CAS  Google Scholar 

  • Ealick SE, Cook WJ, Vijay-Kumar S, Carson M, Nagabhushan TL, Trotta PP, Bugg CE (1991) Three-dimensional structure of recombinant human interferon-gamma. Science 252:698–702

    Article  CAS  Google Scholar 

  • Fenimore J, Young AH (2016) Regulation of IFN-γ expression. Adv Exp Med Biol 941:1–19

    Article  CAS  Google Scholar 

  • Fink K, Grandvaux N (2013) STAT2 and IRF9: beyond ISGF3. JAKSTAT 2:e27521

    PubMed  PubMed Central  Google Scholar 

  • Garrido F, Ruiz-Cabello F, Cabrera T, Perez-Villar JJ, Lopez-Botet M, Duggan-Keen M, Stern PL (1997) Implications for immunosurveillance of altered HLA class I phenotypes in human tumours. Immunol Today 18:89–95

    Article  CAS  Google Scholar 

  • Hamosh A, Scott AF, Amberger JS, Bocchini CA, McKusick VA (2005) Online Mendelian inheritance in man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res 33:D514–D517

    Article  CAS  Google Scholar 

  • Hanada T, Kobayashi T, Chinen T, Saeki K, Takaki H, Koga K, Minoda Y, Sanada T, Yoshioka T, Mimata H, Kato S, Yoshimura A (2006) IFNgamma-dependent, spontaneous development of colorectal carcinomas in SOCS1-deficient mice. J Exp Med 203:1391–1397

    Article  CAS  Google Scholar 

  • Hermjakob H, Montecchi-Palazzi L, Bader G, Wojcik J, Salwinski L, Ceol A, Moore S, Orchard S, Sarkans U, von Mering C, Roechert B, Poux S, Jung E, Mersch H, Kersey P, Lappe M, Li Y, Zeng R, Rana D, Nikolski M, Husi H, Brun C, Shanker K, Grant SG, Sander C, Bork P, Zhu W, Pandey A, Brazma A, Jacq B, Vidal M, Sherman D, Legrain P, Cesareni G, Xenarios I, Eisenberg D, Steipe B, Hogue C, Apweiler R (2004) The HUPO PSI's molecular interaction format--a community standard for the representation of protein interaction data. Nat Biotechnol 22:177–183

    Article  CAS  Google Scholar 

  • Hsiao YW, Liao KW, Chung TF, Liu CH, Hsu CD, Chu RM (2008) Interactions of host IL-6 and IFN-gamma and cancer-derived TGF-beta1 on MHC molecule expression during tumor spontaneous regression. Cancer Immunol Immunother 57:1091–1104

    Article  CAS  Google Scholar 

  • Hu X, Chakravarty SD, Ivashkiv LB (2008) Regulation of interferon and toll-like receptor signaling during macrophage activation by opposing feedforward and feedback inhibition mechanisms. Immunol Rev 226:41–56

    Article  CAS  Google Scholar 

  • Hubackova S, Kucerova A, Michlits G, Kyjacova L, Reinis M, Korolov O, Bartek J, Hodny Z (2016) IFNgamma induces oxidative stress, DNA damage and tumor cell senescence via TGFbeta/SMAD signaling-dependent induction of Nox4 and suppression of ANT2. Oncogene 35:1236–1249

    Article  CAS  Google Scholar 

  • Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, Arkin AP, Bornstein BJ, Bray D, Cornish-Bowden A, Cuellar AA, Dronov S, Gilles ED, Ginkel M, Gor V, Goryanin II, Hedley WJ, Hodgman TC, Hofmeyr JH, Hunter PJ, Juty NS, Kasberger JL, Kremling A, Kummer U, Le Novere N, Loew LM, Lucio D, Mendes P, Minch E, Mjolsness ED, Nakayama Y, Nelson MR, Nielsen PF, Sakurada T, Schaff JC, Shapiro BE, Shimizu TS, Spence HD, Stelling J, Takahashi K, Tomita M, Wagner J, Wang J (2003) The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19:524–531

    Article  CAS  Google Scholar 

  • Kandasamy K, Keerthikumar S, Raju R, Keshava Prasad TS, Ramachandra YL, Mohan S, Pandey A (2009) PathBuilder--open source software for annotating and developing pathway resources. Bioinformatics 25:2860–2862

    Article  CAS  Google Scholar 

  • Kandasamy K, Mohan SS, Raju R, Keerthikumar S, Kumar GS, Venugopal AK, Telikicherla D, Navarro JD, Mathivanan S, Pecquet C, Gollapudi SK, Tattikota SG, Mohan S, Padhukasahasram H, Subbannayya Y, Goel R, Jacob HK, Zhong J, Sekhar R, Nanjappa V, Balakrishnan L, Subbaiah R, Ramachandra YL, Rahiman BA, Prasad TS, Lin JX, Houtman JC, Desiderio S, Renauld JC, Constantinescu SN, Ohara O, Hirano T, Kubo M, Singh S, Khatri P, Draghici S, Bader GD, Sander C, Leonard WJ, Pandey A (2010) NetPath: a public resource of curated signal transduction pathways. Genome Biol 11:R3

    Article  Google Scholar 

  • Kaur S, Sassano A, Dolniak B, Joshi S, Majchrzak-Kita B, Baker DP, Hay N, Fish EN, Platanias LC (2008) Role of the Akt pathway in mRNA translation of interferon-stimulated genes. Proc Natl Acad Sci U S A 105:4808–4813

    Article  CAS  Google Scholar 

  • Kramer OH, Heinzel T (2010) Phosphorylation-acetylation switch in the regulation of STAT1 signaling. Mol Cell Endocrinol 315:40–48

    Article  Google Scholar 

  • Kramer OH, Knauer SK, Greiner G, Jandt E, Reichardt S, Guhrs KH, Stauber RH, Bohmer FD, Heinzel T (2009) A phosphorylation-acetylation switch regulates STAT1 signaling. Genes Dev 23:223–235

    Article  Google Scholar 

  • Lasfar A, Cook JR, Cohen Solal KA, Reuhl K, Kotenko SV, Langer JA, Laskin DL (2014) Critical role of the endogenous interferon ligand-receptors in type I and type II interferons response. Immunology 142:442–452

    Article  CAS  Google Scholar 

  • Lees JR, Cross AH (2007) A little stress is good: IFN-gamma, demyelination, and multiple sclerosis. J Clin Invest 117:297–299

    Article  CAS  Google Scholar 

  • Lin F-C, Young HA (2013) The talented interferon-gamma. Adv Biosci Biotechnol 04(07):8

    Article  Google Scholar 

  • Lipnik K, Naschberger E, Gonin-Laurent N, Kodajova P, Petznek H, Rungaldier S, Astigiano S, Ferrini S, Sturzl M, Hohenadl C (2010) Interferon gamma-induced human guanylate binding protein 1 inhibits mammary tumor growth in mice. Mol Med 16:177–187

    Article  CAS  Google Scholar 

  • Liu N, Song Y, Shi W (2015) IFN-gamma +874 T/A polymorphisms contributes to cervical cancer susceptibility: a meta-analysis. Int J Clin Exp Med 8:4008–4015

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Liu G, Liu Q, Tan J, Hu X, Wang J, Wang Q, Wang X (2017) The cellular character of liquefaction degeneration in oral lichen planus and the role of interferon gamma. J Oral Pathol Med 46:1015–1022

    Article  CAS  Google Scholar 

  • Lyford-Pike S, Peng S, Young GD, Taube JM, Westra WH, Akpeng B, Bruno TC, Richmon JD, Wang H, Bishop JA, Chen L, Drake CG, Topalian SL, Pardoll DM, Pai SI (2013) Evidence for a role of the PD-1:PD-L1 pathway in immune resistance of HPV-associated head and neck squamous cell carcinoma. Cancer Res 73:1733–1741

    Article  CAS  Google Scholar 

  • Maglott D, Ostell J, Pruitt KD, Tatusova T (2011) Entrez gene: gene-centered information at NCBI. Nucleic Acids Res 39:D52–D57

    Article  CAS  Google Scholar 

  • Maleki Vareki S, Garrigos C, Duran I (2017) Biomarkers of response to PD-1/PD-L1 inhibition. Crit Rev Oncol Hematol 116:116–124

    Article  Google Scholar 

  • Marshall A, Celentano A, Cirillo N, McCullough M, Porter S (2017) Tissue-specific regulation of CXCL9/10/11 chemokines in keratinocytes: implications for oral inflammatory disease. PLoS One 12:e0172821

    Article  Google Scholar 

  • Naylor SL, Sakaguchi AY, Shows TB, Law ML, Goeddel DV, Gray PW (1983) Human immune interferon gene is located on chromosome 12. J Exp Med 157:1020–1027

    Article  CAS  Google Scholar 

  • Naylor SL, Gray PW, Lalley PA (1984) Mouse immune interferon (IFN-gamma) gene is on chromosome 10. Somat Cell Mol Genet 10:531–534

    Article  CAS  Google Scholar 

  • Nicolas CS, Amici M, Bortolotto ZA, Doherty A, Csaba Z, Fafouri A, Dournaud P, Gressens P, Collingridge GL, Peineau S (2013) The role of JAK-STAT signaling within the CNS. JAKSTAT 2:e22925

    PubMed  PubMed Central  Google Scholar 

  • Pestka S, Krause CD, Walter MR (2004) Interferons, interferon-like cytokines, and their receptors. Immunol Rev 202:8–32

    Article  CAS  Google Scholar 

  • Pollard KM, Cauvi DM, Toomey CB, Morris KV, Kono DH (2013) Interferon-gamma and systemic autoimmunity. Discov Med 16:123–131

    PubMed  PubMed Central  Google Scholar 

  • Prasad TSK, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S, Telikicherla D, Raju R, Shafreen B, Venugopal A, Balakrishnan L, Marimuthu A, Banerjee S, Somanathan DS, Sebastian A, Rani S, Ray S, Harrys Kishore CJ, Kanth S, Ahmed M, Kashyap MK, Mohmood R, Ramachandra YL, Krishna V, Rahiman BA, Mohan S, Ranganathan P, Ramabadran S, Chaerkady R, Pandey A (2009) Human protein reference database--2009 update. Nucleic Acids Res 37:D767–D772

    Article  CAS  Google Scholar 

  • Schroder K, Hertzog PJ, Ravasi T, Hume DA (2004) Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol 75:163–189

    Article  CAS  Google Scholar 

  • Song JH, Wang CX, Song DK, Wang P, Shuaib A, Hao C (2005) Interferon gamma induces neurite outgrowth by up-regulation of p35 neuron-specific cyclin-dependent kinase 5 activator via activation of ERK1/2 pathway. J Biol Chem 280:12896–12901

    Article  CAS  Google Scholar 

  • Su X, Yu Y, Zhong Y, Giannopoulou EG, Hu X, Liu H, Cross JR, Ratsch G, Rice CM, Ivashkiv LB (2015) Interferon-gamma regulates cellular metabolism and mRNA translation to potentiate macrophage activation. Nat Immunol 16:838–849

    Article  CAS  Google Scholar 

  • Syu LJ, El-Zaatari M, Eaton KA, Liu Z, Tetarbe M, Keeley TM, Pero J, Ferris J, Wilbert D, Kaatz A, Zheng X, Qiao X, Grachtchouk M, Gumucio DL, Merchant JL, Samuelson LC, Dlugosz AA (2012) Transgenic expression of interferon-gamma in mouse stomach leads to inflammation, metaplasia, and dysplasia. Am J Pathol 181:2114–2125

    Article  CAS  Google Scholar 

  • Tate DJ Jr, Patterson JR, Velasco-Gonzalez C, Carroll EN, Trinh J, Edwards D, Aiyar A, Finkel-Jimenez B, Zea AH (2012) Interferon-gamma-induced nitric oxide inhibits the proliferation of murine renal cell carcinoma cells. Int J Biol Sci 8:1109–1120

    Article  CAS  Google Scholar 

  • Tominaga K, Yoshimoto T, Torigoe K, Kurimoto M, Matsui K, Hada T, Okamura H, Nakanishi K (2000) IL-12 synergizes with IL-18 or IL-1beta for IFN-gamma production from human T cells. Int Immunol 12:151–160

    Article  CAS  Google Scholar 

  • van Iersel MP, Kelder T, Pico AR, Hanspers K, Coort S, Conklin BR, Evelo C (2008) Presenting and exploring biological pathways with PathVisio. BMC Bioinformatics 9:399

    Article  Google Scholar 

  • Walser TC, Ma X, Kundu N, Dorsey R, Goloubeva O, Fulton AM (2007) Immune-mediated modulation of breast cancer growth and metastasis by the chemokine Mig (CXCL9) in a murine model. J Immunother 30:490–498

    Article  CAS  Google Scholar 

  • Wheelock EF (1965) Interferon-like virus-inhibitor induced in human leukocytes by Phytohemagglutinin. Science 149:310–311

    Article  CAS  Google Scholar 

  • Xiao M, Wang C, Zhang J, Li Z, Zhao X, Qin Z (2009) IFNgamma promotes papilloma development by up-regulating Th17-associated inflammation. Cancer Res 69:2010–2017

    Article  CAS  Google Scholar 

  • Yang L, Dybedal I, Bryder D, Nilsson L, Sitnicka E, Sasaki Y, Jacobsen SE (2005) IFN-gamma negatively modulates self-renewal of repopulating human hemopoietic stem cells. J Immunol 174:752–757

    Article  CAS  Google Scholar 

  • Yelamanchi SD, Solanki HS, Radhakrishnan A, Balakrishnan L, Advani J, Raja R, Sahasrabuddhe NA, Mathur PP, Dutta P, Prasad TS, Korbonits M, Chatterjee A, Gowda H, Mukherjee KK (2016) Signaling network map of the aryl hydrocarbon receptor. J Cell Commun Signal 10:341–346

    Article  Google Scholar 

  • Yuzawa E, Imaizumi T, Matsumiya T, Yoshida H, Fukuhara R, Kimura H, Fukui A, Tanji K, Mori F, Wakabayashi K, Fujii S, Mizunuma H, Satoh K (2008) Retinoic acid-inducible gene-I is induced by interferon-gamma and regulates CXCL11 expression in HeLa cells. Life Sci 82:670–675

    Article  CAS  Google Scholar 

  • Zaidi MR, Merlino G (2011) The two faces of interferon-gamma in cancer. Clin Cancer Res 17:6118–6124

    Article  CAS  Google Scholar 

  • Zhou R, Wang JX, Tang W, He PL, Yang YF, Li YC, Li XY, Zuo JP (2006) (5R)-5-hydroxytriptolide inhibits IFN-gamma-related signaling. Acta Pharmacol Sin 27:1616–1621

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Department of Biotechnology (DBT), Government of India for research support to the Institute of Bioinformatics, Bangalore. MYB is a recipient of Senior Research Fellowship from Department of Biotechnology (DBT), Government of India. JA is recipient of Senior Research Fellowship from Council of Scientific and Industrial Research (CSIR), Government of India. AAK is recipient of Senior Research Fellowship from Indian Council of Medical Research (ICMR), New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aditi Chatterjee.

Electronic supplementary material

ESM 1

(XLSX 58 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhat, M.Y., Solanki, H.S., Advani, J. et al. Comprehensive network map of interferon gamma signaling. J. Cell Commun. Signal. 12, 745–751 (2018). https://doi.org/10.1007/s12079-018-0486-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12079-018-0486-y

Keywords

Navigation