Skip to main content

Advertisement

Log in

SHARPIN overexpression induces tumorigenesis in human prostate cancer LNCaP, DU145 and PC-3 cells via NF-κB/ERK/Akt signaling pathway

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

A Correction to this article was published on 31 July 2021

This article has been updated

Abstract

SHARPIN emerges higher expression in prostate cancerous tissues than in benign prostate hyperplasia by means of immunohistochemistry in our previous study. In this work, we performed the gain of function assay and find that overexpression of SHARPIN in LNCaP, DU145 and PC-3 cells promoted cell proliferation, invasiveness and reduced apoptosis. Furthermore, SHARPIN overexpression displayed elevated Bcl-2 and Survivin expression and reduced levels of Bax, cleaved caspase-3. Meanwhile, entropic expression of SHARPIN increased the levels of phosphorylated p65, IkBα, ERK and Akt, were selectively increased in these cells. Collectively, our study unraveled the ability of SHARPIN overexpression to induce tumorigenesis of prostate cancer cells through the NF-kB/ERK/Akt pathway and transformation of apoptosis-associated proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

References

  1. Siegel R, DeSantis C, Virgo K, Stein K, Mariotto A, Smith T, Cooper D, Gansler T, Lerro C, Fedewa S, Lin C, Leach C, Cannady RS, Cho H, Scoppa S, Hachey M, Kirch R, Jemal A, Ward E. Cancer treatment and survivorship statistics, 2012. CA Cancer J Clin. 2012;62:220–41.

    Article  PubMed  Google Scholar 

  2. Sheng M, Kim E. The Shank family of scaffold proteins. J Cell Sci. 2000;113:1851–6.

    CAS  PubMed  Google Scholar 

  3. Lim S. Sharpin, a novel postsynaptic density protein that directly interacts with the shank family of proteins. Mol Cell Neurosci. 2001;17:385–97.

    Article  CAS  PubMed  Google Scholar 

  4. Ikeda F, Deribe YL, Skånland SS, Stieglitz B, Grabbe C, Franz-Wachtel M, van Wijk SJL, Goswami P, Nagy V, Terzic J, Tokunaga F, Androulidaki A, Nakagawa T, Pasparakis M, Iwai K, Sundberg JP, Schaefer L, Rittinger K, Macek B, Dikic I. SHARPIN forms a linear ubiquitin ligase complex regulating NF-κB activity and apoptosis. Nature. 2011;471:637–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Tokunaga F, Iwai K. LUBAC, a novel ubiquitin ligase for linear ubiquitination, is crucial for inflammation and immune responses. Microbes Infect. 2012;14:563–72.

    Article  CAS  PubMed  Google Scholar 

  6. Jung J, Kim JM, Park B, Cheon Y, Lee B, Choo SH, Koh SS, Lee S. Newly identified tumor-associated role of human Sharpin. Mol Cell Biochem. 2010;340:161–7.

    Article  CAS  PubMed  Google Scholar 

  7. Zhang Y, Huang H, Zhou H, Du T, Zeng L, Cao Y, Chen J, Lai Y, Li J, Wang G, Guo Z. Activation of nuclear factor κB pathway and downstream targets survivin and livin by SHARPIN contributes to the progression and metastasis of prostate cancer. Cancer 2014;120:3208–18.

  8. Ali AS, Ali S, El-Rayes BF, Philip PA, Sarkar FH. Exploitation of protein kinase C: a useful target for cancer therapy. Cancer Treat Rev. 2009;35:1–8.

    Article  CAS  PubMed  Google Scholar 

  9. DiDonato JA, Mercurio F, Karin M. NF-κB and the link between inflammation and cancer. Immunol Rev. 2012;246(1):379–400.

    Article  PubMed  Google Scholar 

  10. Jin R, Yi Y, Yull FE, Blackwell TS, Clark PE, Koyama T, Smith JA, Matusik RJ. NF-κb gene signature predicts prostate cancer progression. Cancer Res. 2014;74(10):2763–72.

    Article  CAS  PubMed  Google Scholar 

  11. Nguyen DP, Li J, Yadav SS, Tewari AK. Recent insights into NF-κB signalling pathways and the link between inflammation and prostate cancer. Bju Int. 2014;114(2):168–76.

    Article  CAS  PubMed  Google Scholar 

  12. Dhillon AS, Hagan S, Rath O, Kolch W. MAP kinase signalling pathways in cancer. Oncogene. 2007;26(22):3279–90.

    Article  CAS  PubMed  Google Scholar 

  13. Altomare DA, Testa JR. Perturbations of the AKT signaling pathway in human cancer. Oncogene. 2005;24(5):7455–64.

    Article  CAS  PubMed  Google Scholar 

  14. He L, Ingram A, Rybak AP, Tang D. Shank-interacting protein–like 1 promotes tumorigenesis via PTEN inhibition in human tumor cells. J Clin Invest. 2010;120(6):2094–108.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Toulany M, Minjgee M, Saki M, Holler M, Meier F, Eicheler W, Rodemann HP. ERK2-dependent reactivation of Akt mediates the limited response of tumor cells with constitutive K-RAS activity to PI3 K inhibition. Cancer Biol Ther. 2014;15(3):317–28.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Suire S, Hawkins P, Stephens L. Activation of Phosphoinositide 3-Kinase γ by Ras. Curr Biol. 2002;12(13):1068–75.

    Article  CAS  PubMed  Google Scholar 

  17. Zimmermann S. Phosphorylation and regulation of raf by akt (Protein kinase b). Science. 1999;286(5445):1741–4.

    Article  CAS  PubMed  Google Scholar 

  18. Deschenes-Simard X, Kottakis F, Meloche S, Ferbeyre G. ERKs in Cancer: friends or Foes? Cancer Res. 2014;74(2):412–9.

    Article  CAS  PubMed  Google Scholar 

  19. Pommier Y, Sordet O, Antony S, Hayward RL, Kohn KW. Apoptosis defects and chemotherapy resistance: molecular interaction maps and networks. Oncogene. 2004;23(16):2934–49.

    Article  CAS  PubMed  Google Scholar 

  20. Strasser A, Cory S, Adams JM. Deciphering the rules of programmed cell death to improve therapy of cancer and other diseases. EMBO J. 2011;30(18):3667–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Fernald K, Kurokawa M. Evading apoptosis in cancer. Trends Cell Biol. 2013;23(12):620–33.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Liu C, Yang J, Fu W, Qi S, Wang C, Quan C, Yang K. Coactivation of the PI3 K/Akt and ERK signaling pathways in PCB153-induced NF-κB activation and caspase inhibition. Toxicol Appl Pharm. 2014;277(3):270–8.

    Article  CAS  Google Scholar 

  23. Liu Y, He J, Chen X, Li J, Shen M, Yu W, Yang Y, Xiao Z. The proapoptotic effect of formononetin in human osteosarcoma cells: involvement of inactivation of ERK and akt pathways. Cell Physiol Biochem. 2014;34(3):637–45.

    Article  CAS  PubMed  Google Scholar 

  24. Hassan M, Watari H, AbuAlmaaty A, Ohba Y, Sakuragi N. Apoptosis and molecular targeting therapy in cancer. BioMed Res Int. 2014;2014:150845.

    PubMed Central  PubMed  Google Scholar 

  25. Ye Q, Cai W, Zheng Y, Evers BM, She Q. ERK and AKT signaling cooperate to translationally regulate survivin expression for metastatic progression of colorectal cancer. Oncogene. 2013;33(14):1828–39.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Tyagi N, Bhardwaj A, Singh AP, McClellan S, Carter JE, Singh S. P-21 activated kinase 4 promotes proliferation and survival of pancreatic cancer cells through AKT- and ERK-dependent activation of NF-kappaB pathway. Oncotarget. 2014;5(18):8778–89.

    PubMed Central  PubMed  Google Scholar 

  27. Andersen MH, Svane IM, Becker JC, Straten PT. The universal character of the tumor-associated antigen survivin. Clin Cancer Res. 2007;13(20):5991–4.

    Article  CAS  PubMed  Google Scholar 

  28. Kanwar JR, Kamalapuram SK, Kanwar RK. Survivin signaling in clinical oncology: a multifaceted dragon. Med Res Rev. 2013;33(4):765–89.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by Grants from the National Natural Science Foundation of China [No. 81272807, 81472382], the National Natural Science Foundation of China for Young Scientists Grant [No. 81101947], Science and Technology Development Program of Guangdong Province [No. 2013B021800107].

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hai Huang or Zhenghui Guo.

Additional information

Jin Li, Yiming Lai and Yi Cao have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Lai, Y., Cao, Y. et al. SHARPIN overexpression induces tumorigenesis in human prostate cancer LNCaP, DU145 and PC-3 cells via NF-κB/ERK/Akt signaling pathway. Med Oncol 32, 1 (2015). https://doi.org/10.1007/s12032-014-0444-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-014-0444-3

Keywords

Navigation