Skip to main content

Advertisement

Log in

Upregulation of CSPG3 Accompanies Neuronal Progenitor Proliferation and Migration in EAE

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The molecular identities of signals that regulate the CNS lesion remodeling remain unclear. Herein, we report for the first time that extracellular matrix chondroitin sulphate proteoglycan, CSPG3 (neurocan) is upregulated after primary inflammatory injury. EAE was induced using myelin oligodendrocyte glycoprotein (MOG) (35–55) which was characterized by massive polymorphonuclear cell infiltration and loss of myelin basic protein expression along with steep decrease of CNPase. Periventricular white matter (PVWM) and cortex presented with astrogliosis evidenced by increased Glial fibrillary acidic protein (GFAP) immunoreactivity 20 days post immunization (p.i). Neuronal progenitor cell (NPC) proliferation increased after first acute episode in the subventricular zone (SVZ), corpus callosum, and cortex, indicating migration of cells to structures other than rostral migration stream and olfactory bulb, which is indicative of cell recruitment for repair process and was confirmed by presence of thin myelin sheaths in the shadow plaques. Earlier CSPG3 has been demonstrated to impede regeneration. We observed neuroinflammation-induced up-regulation of the CSPG3 expression in two most affected regions viz. PVWM and cortex after proliferation and migration of NPCs. Our results show possible role of reactive astrogliosis in lesion remodeling and redefine the relation between inflammation and endogenous cellular repair which can aid in designing of newer therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agrawal AK, Shukla S, Chaturvedi RK, Seth K, Srivastava N, Ahmad A, Seth PK (2004) Olfactory ensheathing cell transplantation restores functional deficits in rat model of Parkinson's disease: a cotransplantation approach with fetal ventral mesencephalic cells. Neurobiol Dis 16:516–526

    Article  CAS  PubMed  Google Scholar 

  • Altman J (1969) Autoradiographic and histological studies of postnatal neurogenesis. IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb. Comp Neurol 137:433–457

    Article  CAS  Google Scholar 

  • Bahbouhi B, Berthelot L, Pettré S, Michel L, Wiertlewski S, Weksler B, Romero IA, Miller F, Couraud PO, Brouard S, Laplaud DA, Soulillou JP (2009) Peripheral blood CD4+ T lymphocytes from multiple sclerosis patients are characterized by higher PSGL-1 expression and transmigration capacity across a human blood–brain barrier-derived endothelial cell line. J Leukoc Biol 86:1049–1063

    Article  CAS  PubMed  Google Scholar 

  • Bandtlow CE, Zimmermann DR (2000) Proteoglycans in the developing brain: new conceptual insights for old proteins. Physiol Rev 80:1267–1290

    CAS  PubMed  Google Scholar 

  • Barker RA, Dunnett SB, Faissner A, Fawcett JW (1996) The time course of loss of dopaminergic neurons and the gliotic reaction surrounding grafts of embryonic mesencephalon to the striatum. Exp Neurol 141:79–93

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Bradl M, Lassmann H (2010) Oligodendrocytes: biology and pathology. Acta Neuropathol 119:37–53

    Article  PubMed  Google Scholar 

  • Bradley PP, Priebat DA, Christensen RD, Rothstein G (1982) Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker. J Invest Dermatol 78:206–209

    Article  CAS  PubMed  Google Scholar 

  • Brosnan CF, Raine CS (1996) Mechanisms of immune injury in multiple sclerosis. Brain Pathol 6:243–257

    Article  CAS  PubMed  Google Scholar 

  • Bruck W, Kuhlmann T, Stadelmann C (2003) Remyelination in multiple sclerosis. J Neurol Sci 206:181–185

    Article  PubMed  Google Scholar 

  • Chang A, Nishiyama A, Peterson J, Prineas J, Trapp BD (2000) NG2-positive oligodendrocyte progenitor cells in adult human brain and multiple sclerosis lesions. J Neurosci 20:6404–6412

    CAS  PubMed  Google Scholar 

  • Compston A, Coles A (2008) Multiple sclerosis. Lancet 372:1502–1517

    Article  CAS  PubMed  Google Scholar 

  • Seiffert E, Dreier JP, Ivens S, Bechmann I, Tomkins O, Heinemann U, Friedman A (2004) Lasting blood–brain barrier disruption induces epileptic focus in the rat somatosensory cortex. J Neurosci 24:7829–7836

    Article  CAS  PubMed  Google Scholar 

  • Franklin RJ (2002) Why does remyelination fail in multiple sclerosis? Nat Rev Neurosci 3:705–714

    Article  CAS  PubMed  Google Scholar 

  • Friedlander D, Milev P, Karthikeyan MRK, Margolis RU, Grumet M (1994) The neuronal chondroitin sulfate proteoglycan neurocan binds to the neural cell adhesion molecules Ng-CAM/L1/NILE and N-CAM, and inhibits neuronal adhesion and neurite outgrowth. J Cell Biol 125:669–680

    Article  CAS  PubMed  Google Scholar 

  • French HM, Reid M, Mamontov P, Simmons RA, Grinspan JB (2009) Oxidative stress disrupts oligodendrocyte maturation. J Neurosci Res 87:3076–3087

    Article  CAS  PubMed  Google Scholar 

  • Gay D, Esiri M (1991) Blood–brain barrier damage in acute multiple sclerosis. Brain 114:557–572

    Article  PubMed  Google Scholar 

  • Garwood J, Rigato F, Heck N, Faissner A (2001) Tenascin glycoproteins and the complementary ligand DSD-1-PG/phosphacan—structuring the neural extracellular matrix during development and repair. Restor Neurol Neurosci 19:51–64

    CAS  PubMed  Google Scholar 

  • Garwood J, Schnädelbach O, Clement A, Schütte K, Bach A, Faissner A (1999) DSD-1- proteoglycan is the mouse homolog of phosphacan and displays opposing effects on neurite outgrowth dependent on neuronal lineage. J Neurosci 19:3888–3899

    CAS  PubMed  Google Scholar 

  • Grumet M, Flaccus A, Margolis RU (1993) Functional characterization of chondroitin sulfate proteoglycans of brain: interactions with neurons and neural cell adhesion molecules. J Cell Biol 120:815–824

    Article  CAS  PubMed  Google Scholar 

  • Inatani M, Tanihara H, Oohira A, Honjo M, Kido N, Honda Y (2000) Upregulated expression of neurocan, a nervous tissue specific proteoglycan, in transient retinal ischemia. Invest Ophthalmol Vis Sci 41:2748–2754

    CAS  PubMed  Google Scholar 

  • Kasper LH, Shoemaker J (2010) Multiple sclerosis immunology: the healthy immune system vs. the MS immune system. Neurology 74:S2–S8

    Article  CAS  PubMed  Google Scholar 

  • Kornack DR, Rakic P (2001) Cell proliferation without neurogenesis in adult primate neocortex. Science 294:2127–2130

    Article  CAS  PubMed  Google Scholar 

  • Lachapelle F, Avellana-Adalid V, Nait-Oumesmar B, Baron-Van Evercooren A (2002) Fibroblast growth factor-2 (FGF-2) and platelet-derived growth factor AB (PDGF AB) promote adult SVZ-derived oligodendrogenesis in vivo. Mol Cell Neurosci 20:390–403

    Article  CAS  PubMed  Google Scholar 

  • Li H, Leung TC, Hoffman S, Balsamo J, Lilien J (2000) Coordinate regulation of cadherin and integrin function by the chondroitin sulfate proteoglycan neurocan. J Cell Biol 149:1275–1288

    Article  CAS  PubMed  Google Scholar 

  • Lois C, Alvarez-Buylla A (1994) Long-distance neuronal migration in the adult mammalian brain. Science 264:1145–1148

    Article  CAS  PubMed  Google Scholar 

  • Luskin MB (1993) Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 11:173–189

    Article  CAS  PubMed  Google Scholar 

  • Markovic-Plese S, McFarland HF (2001) Immunopathogenesis of the multiple sclerosis lesion. Curr Neurol Neurosci Rep 1:257–262

    Article  CAS  PubMed  Google Scholar 

  • McMorris FA, McKinnon RD (1996) Regulation of oligodendrocyte development and CNS myelination by growth factors: prospects for therapy of demyelinating disease. Brain Pathol 6:313–329

    Article  CAS  PubMed  Google Scholar 

  • McKeon RJ, Hoke A, Silver J (1995) Injury-induced proteoglycans inhibit the potential for laminin-mediated axon growth on astrocytic scars. Exp Neurol 136:32–43

    Article  CAS  PubMed  Google Scholar 

  • McKeon RJ, Jurynec MJ, Buck CR (1999) The chondroitin sulfate proteoglycans neurocan and phosphacan are expressed by reactive astrocytes in the chronic CNS glial scar. J Neurosci 19:10778–10788

    CAS  PubMed  Google Scholar 

  • Sajad M, Zargan J, Chawla R, Umar S, Sadaqat M, Khan HA (2009) Hippocampal neurodegeneration in experimental autoimmune encephalomyelitis: potential role of inflammation activated myeloperoxidase. Mol Cell Biochem 328:183–188

    Article  CAS  PubMed  Google Scholar 

  • Minagar A, Shapshak P, Fujimura R, Ownby R, Heyes M, Eisdorfer C (2002) The role of macrophage/microglia and astrocytes in the pathogenesis of three neurologic disorders: HIV-associated dementia, Alzheimer's disease, and multiple sclerosis. J Neurol Sci 202:13–23

    Article  CAS  PubMed  Google Scholar 

  • Murray PD, McGavern DB, Sathornsumetee S, Rodriguez M (2001) Spontaneous remyelination following extensive demyelination is associated with improved neurological function in a viral model of multiple sclerosis. Brain 124:1403–1416

    Article  CAS  PubMed  Google Scholar 

  • Nagra RM, Becher B, Tourtellotte WW, Antel JP, Gold D, Paladino T et al (1997) Immunohistochemical and genetic evidence of myeloperoxidase involvement in multiple sclerosis. J Neuroimmunol 78:97–107

    Article  CAS  PubMed  Google Scholar 

  • Parkinson JF (1997) The role of nitric oxide in multiple sclerosis. J Mol Med 75:174–186

    Article  CAS  PubMed  Google Scholar 

  • Pencea V, Bingaman KD, Freedman LJ, Luskin MB (2001) Neurogenesis in the subventricular zone and rostral migratory stream of the neonatal and adult primate forebrain. Exp Neurol 172:1–16

    Article  CAS  PubMed  Google Scholar 

  • Picard-Riera N, Nait-Oumesmar B, Baron-Van Evercooren A (2004) Endogenous adult neural stem cells: limits and potential to repair the injured central nervous system. J Neurosci Res 76:223–231

    Article  CAS  PubMed  Google Scholar 

  • Picard-Riera N, Decker L, Delarasse C, Goude K, Nait-Ournesmar B, Liblau R, Pham-Dinh D, Baron-Van Evercooren A (2002) Experimental autoimmune encephalomyelitis mobilizes neural progenitors from the subventricular zone to undergo oligodendrogenesis in adult mice. Proc Natl Acad Sci USA 99:13211–13216

    Article  CAS  PubMed  Google Scholar 

  • Prohaska J, Clark D, Wella W (1973) Improved rapidity and precision in the determination of brain 2′,3′-cyclic nucleotide 3′-phosphohydrolase. Anal Biochem 56:275–282

    Article  CAS  PubMed  Google Scholar 

  • Sanai N, Tramontin AD, Quiñones-Hinojosa A, Barbaro NM, Gupta N, Kunwar S, Lawton MT, McDermott MW, Parsa AT, Manuel-García Verdugo J, Berger MS, Alvarez-Buylla A (2004) Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 427:740–744

    Article  CAS  PubMed  Google Scholar 

  • Schäfer R, Dehn D, Burbach GJ, Deller T (2008) Differential regulation of chondroitin sulfate proteoglycan mRNAs in the denervated rat fascia dentata after unilateral entorhinal cortex lesion. Neurosci Lett 439:61–65

    Article  PubMed  Google Scholar 

  • Singhal S, Lawrence JM, Bhatia B, Ellis JS, Kwan AS, Macneil A, Luthert PJ, Fawcett JW, Perez MT, Khaw PT, Limb GA (2008) Chondroitin sulfate proteoglycans and microglia prevent migration and integration of grafted Müller stem cells into degenerating retina. Stem Cells 26:1074–1082

    Article  PubMed  Google Scholar 

  • Swetlana Sirko, von Holst Alexander, Andrea Wizenmann, Magdalena Götz, Andreas Faissner (2007) Chondroitin sulfate glycosaminoglycans control proliferation, radial glia cell differentiation and neurogenesis in neural stem/progenitor cells. Development 134:2727–2738

    Article  Google Scholar 

  • Werner P, Pitt D, Raine CSJ (2000) Glutamate excitotoxicity—a mechanism for axonal damage and oligodendrocyte death in multiple sclerosis? Neural Transm 60:375–385

    Google Scholar 

  • Wolfgang B (2005) Inflammatory demyelination is not central to the pathogenesis of multiple sclerosis. J Neurol 252:10–15

    Article  Google Scholar 

  • Wu F, Cao W, Yang Y, Liu A (2010) Extensive infiltration of neutrophils in the acute phase of experimental autoimmune encephalomyelitis in C57BL/6 mice. Histochem Cell Biol 133:313–322

    Article  CAS  PubMed  Google Scholar 

  • Zakrzewska-Pniewska B, Styczynska M, Podlecka A, Samocka R, Peplonska B, Barcikowska M et al (2004) Association of apolipoprotein E and myeloperoxidase genotypes to clinical course of familial and sporadic multiple sclerosis. Mult Scler 10:266–271

    Article  CAS  PubMed  Google Scholar 

  • Zuo J, Neubauer D, Dyess K, Ferguson TA, Muir D (1998) Degradation of chondroitin sulfate proteoglycan enhances the neurite-promoting potential of spinal cord tissue. Exp Neurol 154:654–662

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

Authors are thankful to Dr. G.N Qazi (Vice Chancellor, Jamia Hamdard) for moral support during the study. Authors express sincere thanks to Dr. Mir Sadaqat, Department of Internal Medicine—SKIMS Medical College Hospital, Srinagar-India for his kind help in GFAP immunohistochemistry.

Mir Sajad is recipient of Senior Research Fellowship (SRF) from Ministry of Health and Family Welfare, Govt. of India, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haider A. Khan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sajad, M., Zargan, J., Chawla, R. et al. Upregulation of CSPG3 Accompanies Neuronal Progenitor Proliferation and Migration in EAE. J Mol Neurosci 43, 531–540 (2011). https://doi.org/10.1007/s12031-010-9476-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-010-9476-0

Keywords

Navigation