Skip to main content
Log in

Transplanted Late Outgrowth Endothelial Progenitor Cells as Cell Therapy Product for Stroke

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Endothelial progenitor cells (EPCs) seem to be a promising option to treat patients with ischemic diseases. Here, we investigated the effects of late outgrowth EPCs, or endothelial colony-forming cells (ECFCs), a recently defined homogeneous subtype of EPCs, in a rat model of transient middle cerebral artery occlusion (MCAO). Either vehicle or 4.106 ECFCs, isolated from human cord blood, were intravenously injected 24 h after 1 h MCAO in rats assigned to control and transplanted groups respectively. 111In-oxine-labeled ECFCs specifically homed to ischemic hemisphere and CM-Dil prelabeled ECFCs preferentially settled in the inner boundary of the core area of transplanted animals. Although incorporation of cells into neovessels was hardly detectable, ECFCs transplantation was associated with a reduction in apoptotic cell number, an increase in capillary density and a stimulation of neurogenesis at the site of injury. These effects were associated with an increase in growth factors expression in homogenates from ischemic area and may be related to the secretion by ECFCs of soluble factors that could affect apoptosis, vascular growth and neurogenesis. Microscopic examination of the ischemic hemisphere showed that ECFCs transplantation was also associated with a reduction in reactive astrogliosis. In conclusion, we demonstrated that ECFCs injected 24 h after MCAO settled in the injured area and improved functional recovery. The neurological benefits may be linked to a reduction in ischemia-induced apoptosis and a stimulation of ischemia-induced angiogenesis and neurogenesis. These findings raise perspectives for the use of ECFCs as a well-characterized cell therapy product for optimal therapeutic outcome after stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Rouhl, R. P., van Oostenbrugge, R. J., Damoiseaux, J., Cohen Tervaert, J. W., & Lodder, J. (2008). Endothelial progenitor cell research in stroke: a potential shift in pathophysiological and therapeutical concepts. Stroke, 39, 2158–65.

    Article  PubMed  Google Scholar 

  2. Chen, J., Li, Y., Wang, L., Lu, M., Zhang, X., & Chopp, M. (2001). Therapeutic benefit of intracerebral transplantation of bone marrow stromal cells after cerebral ischemia in rats. Journal of the Neurological Sciences, 189, 49–57.

    Article  CAS  PubMed  Google Scholar 

  3. Chen, J., Sanberg, P. R., Li, Y., Wang, L., Lu, M., Willing, A. E., et al. (2001). Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke, 32, 2682–8.

    Article  CAS  PubMed  Google Scholar 

  4. Li, Y., Chen, J., Wang, L., Lu, M., & Chopp, M. (2001). Treatment of stroke in rat with intracarotid administration of marrow stromal cells. Neurology, 56, 1666–72.

    CAS  PubMed  Google Scholar 

  5. Newcomb, J. D., Ajmo, C. T., Jr., Sanberg, C. D., Sanberg, P. R., Pennypacker, K. R., & Willing, A. E. (2006). Timing of cord blood treatment after experimental stroke determines therapeutic efficacy. Cell Transplantation, 15, 213–23.

    Article  PubMed  Google Scholar 

  6. Bang, O. Y., Lee, J. S., Lee, P. H., & Lee, G. (2005). Autologous mesenchymal stem cell transplantation in stroke patients. Annals of Neurology, 57, 874–82.

    Article  PubMed  Google Scholar 

  7. Hur, J., Yoon, C. H., Kim, H. S., Choi, J. H., Kang, H. J., Hwang, K. K., et al. (2004). Characterization of two types of endothelial progenitor cells and their different contributions to neoangiogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 24, 288–93.

    Article  CAS  PubMed  Google Scholar 

  8. Yoder, M. C., Mead, L. E., Prater, D., Krier, T. R., Mroueh, K. N., Li, F., et al. (2007). Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood, 109, 1801–9.

    Article  CAS  PubMed  Google Scholar 

  9. Ingram, D. A., Mead, L. E., Tanaka, H., Meade, V., Fenoglio, A., Mortell, K., et al. (2004). Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood, 104(9), 2752–60.

    Article  CAS  PubMed  Google Scholar 

  10. Wechsler, L., Steindler, D., Borlongan, C., Chopp, M., Savitz, S., Deans, R., et al. (2009). Stem cell therapies as an emerging paradigm in stroke (STEPS): bridging basic and clinical science for cellular and neurogenic factor therapy in treating stroke. Stroke, 40(2), 510–5.

    Google Scholar 

  11. Longa, E. Z., Weinstein, P. R., Carlson, S., & Cummins, R. (1989). Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke, 20(1), 84–91.

    CAS  PubMed  Google Scholar 

  12. Codaccioni, J. L., Velly, L., Moubarik, C., Bruder, N., Pisano, P., & Guillet, B. (2009). Sevoflurane preconditioning against focal cerebral ischemia: inhibition of apoptosis in the face of transient improvement of neurological outcome. Anesthesiology, 110(6), 1271–8.

    Article  CAS  PubMed  Google Scholar 

  13. Delorme, B., Basire, A., Gentile, C., Sabatier, F., Monsonis, F., Desouches, C., et al. (2005). Presence of endothelial progenitor cells, distinct from mature endothelial cells, within human CD146+ blood cells. Thrombosis and Haemostasis, 94, 1270–9.

    CAS  PubMed  Google Scholar 

  14. Jaffe, E. A., Nachman, R. L., Becker, C. G., & Minick, C. R. (1973). Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. Journal of Clinical Investigation, 52(11), 2745–56.

    Article  CAS  PubMed  Google Scholar 

  15. Jourde-Chiche, N., Dou, L., Sabatier, F., Calaf, R., Cerini, C., Robert, S., et al. (2009). Levels of circulating endothelial progenitor cells are related to uremic toxins and vascular injury in hemodialysis patients. Journal of Thrombosis and Haemostasis, 7(9), 1576–84.

    Article  CAS  PubMed  Google Scholar 

  16. Aicher, A., Brenner, W., Zuhayra, M., Badorff, C., Massoudi, S., Assmus, B., et al. (2003). Assessment of the tissue distribution of transplanted human endothelial progenitor cells by radioactive labelling. Circulation, 107, 2134–9.

    Article  PubMed  Google Scholar 

  17. Lin, T. N., He, Y. Y., Wu, G., Khan, M., & Hsu, C. Y. (1993). Effect of brain oedema on infarct volume in a focal cerebral ischemia model in rats. Stroke, 24, 117–21.

    CAS  PubMed  Google Scholar 

  18. Dubowitz, V., Sewry, C. A., & Fitzsimons, R. B. (1985). Muscle biopsy: a practical approach (2nd ed., pp. 504–559). Philadelphia: Bailliere –Tindall.

    Google Scholar 

  19. Zhang, L., Yang, R., & Han, Z. C. (2006). Transplantation of umbilical cord blood-derived endothelial progenitor cells: a promising method of therapeutic revascularisation. European Journal of Haematology, 76, 1–8.

    Article  PubMed  Google Scholar 

  20. Corselli, M., Parodi, A., Mogni, M., Sessarego, N., Kunkl, A., Dagna-Bricarelli, F., et al. (2008). Clinical scale ex vivo expansion of cord blood-derived outgrowth endothelial progenitor cells is associated with high incidence of karyotype aberrations. Experimental Hematology, 36, 340–9.

    Article  CAS  PubMed  Google Scholar 

  21. Li, Y., Chen, J., Chen, X. G., Wang, L., Gautam, S. C., Xu, Y. X., et al. (2002). Human marrow stromal cell therapy for stroke in rat, neurotrophins and functional recovery. Neurology, 59, 514–23.

    CAS  PubMed  Google Scholar 

  22. Chen, J., Li, Y., Katakowski, M., Chen, X., Wang, L., Lu, D., et al. (2003). Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat. Journal of Neuroscience Research, 73, 778–86.

    Article  CAS  PubMed  Google Scholar 

  23. Vendrame, M., Cassady, J., Newcomb, J., Butler, T., Pennypacker, K. R., Zigova, T., et al. (2004). Infusion of human umbilical cord blood cells in rat model of stroke dose-dependently rescues behavioral deficits and reduces infarct volume. Stroke, 35, 2390–5.

    Article  PubMed  Google Scholar 

  24. Iihoshi, S., Honmou, O., Houkin, K., Hashi, K., & Kocsis, J. D. (2004). A therapeutic window for intravenous administration of autologous bone marrow after cerebral ischemia in adult rats. Brain Research, 1007, 1–9.

    Article  CAS  PubMed  Google Scholar 

  25. Mokudai, T., Ayoub, I. A., Sakakibara, Y., Lee, E. J., Ogilvy, C. S., & Maynard, K. I. (2000). Delayed treatment with nicotinamide (Vitamin B3) improves neurological outcome and reduces infarct volume after transient focal cerebral ischemia in Wistar rats. Stroke, 31, 1679–85.

    CAS  PubMed  Google Scholar 

  26. Schöller, K., Zausinger, S., Baethmann, A., & Schmid-Elsaesser, R. (2004). Neuroprotection in ischemic stroke-combination drug therapy and mild hypothermia in a rat model of permanent focal cerebral ischemia. Brain Research, 1023, 272–8.

    Article  PubMed  Google Scholar 

  27. Sobrino, T., Hurtado, O., Moro, M. A., Rodríguez-Yáñez, M., Castellanos, M., Brea, D., et al. (2007). The increase of circulating endothelial progenitor cells after acute ischemic stroke is associated with good outcome. Stroke, 38(10), 2759–64.

    Article  PubMed  Google Scholar 

  28. Di Stefano, R., Barsotti, M. C., Armani, C., Santoni, T., Lorenzet, R., Balbarini, A., et al. (2009). Human peripheral blood endothelial progenitor cells synthesize and express functionally active tissue factor. Thrombosis Research, 123(6), 925–30.

    Article  PubMed  Google Scholar 

  29. Zampetaki, A., Kirton, J. P., & Xu, Q. (2008). Vascular repair by endothelial progenitor cells. Cardiovascular Research, 78(3), 413–21.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang, Z. G., & Chopp, M. (2009). Neurorestorative therapies for stroke: underlying mechanisms and translation to the clinic. Lancet Neurology, 8(5), 491–500.

    Article  PubMed  Google Scholar 

  31. He, T., Peterson, T. E., & Katusic, Z. S. (2005). Paracrine mitogenic effect of human endothelial progenitor cells: role of interleukin-8. American Journal of Physiology. Heart and Circulatory Physiology, 289, 968–72.

    Article  Google Scholar 

  32. Bechara, C., Chai, H., Lin, P. H., Yao, Q., & Chen, C. (2007). Growth related oncogene-alpha (GRO-alpha): roles in atherosclerosis, angiogenesis and other inflammatory conditions. Medical Science Monitor, 13(6), RA87–RA90.

    CAS  PubMed  Google Scholar 

  33. Krupinski, J., Issa, R., Bujny, T., Slevin, M., Kumar, P., Kumar, S., et al. (1997). A putative role for platelet-derived growth factor in angiogenesis and neuroprotection after ischemic stroke in humans. Stroke, 28(3), 564–73.

    CAS  PubMed  Google Scholar 

  34. Liu, X. S., Zhang, Z. G., Zhang, R. L., Gregg, S. R., Wang, L., Yier, T., et al. (2007). Chemokine ligand 2 (CCL2) induces migration and differentiation of subventricular zone cells after stroke. Journal of Neuroscience Research, 85(10), 2120–5.

    Article  CAS  PubMed  Google Scholar 

  35. Candelario-Jalil, E., Yang, Y., & Rosenberg, G. A. (2009). Diverse roles of matrix metalloproteinases and tissue inhibitors of metalloproteinases in neuroinflammation and cerebral ischemia. Neuroscience, 158(3), 983–94. Review.

    Article  CAS  PubMed  Google Scholar 

  36. Sun, D., Bullock, M. R., Altememi, N., Zhou, Z., Hagood, S., Rolfe, A., et al. (2010).The effect of epidermal growth factor in the injured brain after trauma in rats. Journal of Neurotrauma, 27, 923–38.

    Google Scholar 

  37. Chen, J., Zhang, Z. G., Li, Y., Wang, L., Xu, Y. X., Gautam, S. C., et al. (2003). Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic inner boundary zone after stroke in rats. Circulation Research, 92, 692–9.

    Article  CAS  PubMed  Google Scholar 

  38. Mahmood, A., Lu, D., Qu, C., Goussev, A., & Chopp, M. (2006). Long-term recovery after bone marrow stromal cell treatment of traumatic brain injury in rats. Journal of Neurosurgery, 104(2), 272–7.

    Article  PubMed  Google Scholar 

  39. Mahmood, A., Lu, D., & Chopp, M. (2004). Intravenous administration of marrow stromal cells (MSCs) increases the expression of growth factors in rat brain after traumatic brain injury. Journal of Neurotrauma, 21(1), 33–9.

    Article  PubMed  Google Scholar 

  40. Wang, C. H., Cheng, W. J., Yang, N. I., Kuo, L. T., Hsu, C. M., Yeh, H. I., et al. (2008). Late-outgrowth endothelial cells attenuate intimal hyperplasia contributed by mesenchymal stem cells after vascular injury. Arteriosclerosis, Thrombosis, and Vascular Biology, 28, 54–60.

    Article  PubMed  Google Scholar 

  41. Hau, S., Reich, D. M., Scholz, M., Naumann, W., Emmrich, F., Kamprad, M., et al. (2008). Evidence for neuroprotective properties of human umbilical cord blood cells after neuronal hypoxia in vitro. BMC Neuroscience, 9, 30.

    Article  PubMed  Google Scholar 

  42. Kooijman, R., Sarre, S., Michotte, Y., & De Keyser, J. (2009). Insulin-like growth factor I: a potential neuroprotective compound for the treatment of acute ischemic stroke? Stroke, 40(4), e83–8.

    Article  PubMed  Google Scholar 

  43. Lee, R., Kermani, P., Teng, K. K., & Hempstead, B. L. (2001). Regulation of cell survival by secreted proneurotrophins. Science, 294(5548), 1945–8.

    Article  CAS  PubMed  Google Scholar 

  44. Deng, Y. B., Ye, W. B., Hu, Z. Z., Yan, Y., Wang, Y., Takon, B. F., et al. (2010). Intravenously administered BMSCs reduce neuronal apoptosis and promote neuronal proliferation through the release of VEGF after stroke in rats. Neurological Research, 32(2), 148–56.

    Article  CAS  PubMed  Google Scholar 

  45. Mouw, G., Zechel, J. L., Zhou, Y., Lust, W. D., Selman, W. R., & Ratcheson, R. A. (2002). Caspase-9 inhibition after focal cerebral ischemia improves outcome following reversible focal ischemia. Metabolic Brain Disease, 17, 143–51.

    Article  CAS  PubMed  Google Scholar 

  46. Fedoroff, S., Berezovskaya, O., & Maysinger, D. (1997). Role of colony stimulating factor-1 in brain damage caused by ischemia. Neuroscience and Biobehavioral Reviews, 21, 187–91.

    Article  CAS  PubMed  Google Scholar 

  47. Dinkel, K., Dhabhar, F. S., & Sapolsky, R. M. (2004). Neurotoxic effects of polymorphonuclear granulocytes on hippocampal primary cultures. Proceedings of the National Academy of Sciences of the USA, 101, 331–6.

    Article  CAS  PubMed  Google Scholar 

  48. Li, Y., Chen, J., Zhang, C. L., Wang, L., Lu, D., Katakowski, M., et al. (2005). Gliosis and brain remodeling after treatment of stroke in rats with marrow stromal cells. Glia, 49, 407–17.

    Article  PubMed  Google Scholar 

  49. Chopp, M., Li, Y., & Zhang, Z. (2009). Mechanisms underlying improved recovery of neurological function after stroke in the rodent after treatment with neurorestorative cell-based therapies. Stroke, 40, S143–S145.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank P. Stellmann for technical assistance in the preparation of ECFCs and the Department of Gynecology and Obstetric of St Joseph Hospital in Marseille for collection of cord blood samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Guillet.

Additional information

Chahrazad Moubarik and Benjamin Guillet have equally contributed to the study

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moubarik, C., Guillet, B., Youssef, B. et al. Transplanted Late Outgrowth Endothelial Progenitor Cells as Cell Therapy Product for Stroke. Stem Cell Rev and Rep 7, 208–220 (2011). https://doi.org/10.1007/s12015-010-9157-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-010-9157-y

Keywords

Navigation