Skip to main content

Advertisement

Log in

Zinc, Copper, and Selenium Tissue Levels and Their Relation to Subcutaneous Abscess, Minor Surgery, and Wound Healing in Humans

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Trace element involvement in wounds left to heal by secondary intention needs clarification. We have previously reported faster healing of wounds following acute surgery compared with elective excision of pilonidal sinus disease. The effect of topical zinc on the closure of the excisional wounds was mediocre compared with placebo. In contrast, parenteral zinc, copper, and selenium combined appear effective for wound healing in humans. We have investigated zinc, copper, and selenium with respect to (a) impact of acute versus chronic pilonidal sinus and (b) regional concentrations within granulating wounds treated topically with placebo or zinc in 42 (33 males) pilonidal disease patients. Baseline serum and skin concentrations of copper correlated (r S = 0.351, p = 0.033, n = 37), but not of zinc or selenium. Patients with abscesses had elevated serum C-reactive protein (CRP) and copper levels (+29 %; p < 0.001) compared with the elective patients consistent with the strong correlation between serum copper and CRP (r S = 0.715, p < 0.0005, n = 41). Seven days after elective surgery, serum CRP and copper levels were elevated (p = 0.010) versus preoperative values. The copper concentration in wound edges was higher than in periwound skin (p < 0.0005) and wound base (p = 0.010). Selenium levels were increased in wound edge compared to wound base (p = 0.003). Topical zinc oxide treatment doubled (p < 0.050) zinc concentrations in the three tissue localizations without concomitant significant changes of copper or selenium levels. In conclusion, copper and selenium are mobilized to injured sites possibly to enhance host defense and early wound healing mechanisms that are complementary to the necessity of zinc for matrix metalloproteinase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Vermeulen H, Ubbink DT, Goossens A, de Vos R, Legemate DA (2005) Systematic review of dressings and topical agents for surgical wounds healing by secondary intention. Br J Surg 92:665–672

    Article  PubMed  CAS  Google Scholar 

  2. Chaby G, Senet P, Vaneau M, Martel P, Guillaume JC, Meaume S, Teot L, Debure C, Dompmartin A, Bachelet H, Carsin H, Matz V, Richard JL, Rochet JM, Sales-Aussias N, Zagnoli A, Denis C, Guillot B, Chosidow O (2007) Dressings for acute and chronic wounds: a systematic review. Arch Dermatol 143:1297–1304

    Article  PubMed  Google Scholar 

  3. Cowan T (ed) (2012) Wound care handbook 2012–2013. MA Healthcare Ltd, London

    Google Scholar 

  4. Franz MG, Robson MC, Steed DL, Barbul A, Brem H, Cooper DM, Leaper D, Milner SM, Payne WG, Wachtel TL, Wiersema-Bryant L (2008) Guidelines to aid healing of acute wounds by decreasing impediments of healing. Wound Repair Regen 16:723–748

    Article  PubMed  Google Scholar 

  5. Lansdown AB, Mirastschijski U, Stubbs N, Scanlon E, Ågren MS (2007) Zinc in wound healing: theoretical, experimental, and clinical aspects. Wound Repair Regen 15:2–16

    Article  PubMed  Google Scholar 

  6. Stevens LJ, Page-McCaw A (2012) A secreted MMP is required for reepithelialization during wound healing. Mol Biol Cell 23:1068–1079

    Article  PubMed  CAS  Google Scholar 

  7. Rucker RB, Romero-Chapman N, Wong T, Lee J, Steinberg FM, McGee C, Clegg MS, Reiser K, Kosonen T, Uriu-Hare JY, Murphy J, Keen CL (1996) Modulation of lysyl oxidase by dietary copper in rats. J Nutr 126:51–60

    PubMed  CAS  Google Scholar 

  8. Ishigami N, Isoda K, Adachi T, Niida T, Kujiraoka T, Hakuno D, Kondo H, Kusuhara M, Ohsuzu F (2011) Deficiency of CuZn superoxide dismutase promotes inflammation and alters medial structure following vascular injury. J Atheroscler Thromb 18:1009–1017

    Article  PubMed  CAS  Google Scholar 

  9. Hu GF (1998) Copper stimulates proliferation of human endothelial cells under culture. J Cell Biochem 69:326–335

    Article  PubMed  CAS  Google Scholar 

  10. Sen CK, Khanna S, Venojarvi M, Trikha P, Ellison EC, Hunt TK, Roy S (2002) Copper-induced vascular endothelial growth factor expression and wound healing. Am J Physiol Heart Circ Physiol 282:H1821–1827

    PubMed  CAS  Google Scholar 

  11. Martin F, Linden T, Katschinski DM, Oehme F, Flamme I, Mukhopadhyay CK, Eckhardt K, Tröger J, Barth S, Camenisch G, Wenger RH (2005) Copper-dependent activation of hypoxia-inducible factor (HIF)-1: implications for ceruloplasmin regulation. Blood 105:4613–4619

    Article  PubMed  CAS  Google Scholar 

  12. Gérard C, Bordeleau LJ, Barralet J, Doillon CJ (2010) The stimulation of angiogenesis and collagen deposition by copper. Biomaterials 31:824–831

    Article  PubMed  Google Scholar 

  13. Liusuwan RA, Palmieri T, Warden N, Greenhalgh DG (2008) Impaired healing because of copper deficiency in a pediatric burn patient: a case report. J Trauma 65:464–466

    Article  PubMed  Google Scholar 

  14. Sengupta A, Lichti UF, Carlson BA, Ryscavage AO, Gladyshev VN, Yuspa SH, Hatfield DL (2010) Selenoproteins are essential for proper keratinocyte function and skin development. PLoS One 5:e12249

    Article  PubMed  Google Scholar 

  15. Mori R, Power KT, Wang CM, Martin P, Becker DL (2006) Acute downregulation of connexin 43 at wound sites leads to a reduced inflammatory response, enhanced keratinocyte proliferation and wound fibroblast migration. J Cell Sci 119:5193–5203

    Article  PubMed  CAS  Google Scholar 

  16. Bajpai S, Mishra M, Kumar H, Tripathi K, Singh SK, Pandey HP, Singh RK (2011) Effect of selenium on connexin expression, angiogenesis, and antioxidant status in diabetic wound healing. Biol Trace Elem Res 144:327–338

    Article  PubMed  CAS  Google Scholar 

  17. Ågren MS, Krusell M, Franzén L (1991) Release and absorption of zinc from zinc oxide and zinc sulfate in open wounds. Acta Derm Venereol 71:330–333

    PubMed  Google Scholar 

  18. Lansdown ABG, Sampson B, Rowe A (1999) Sequential changes in trace metal, metallothionein and calmodulin concentrations in healing skin wounds. J Anat 195(Pt 3):375–386

    Article  PubMed  CAS  Google Scholar 

  19. Ågren MS, Franzén L, Chvapil M (1993) Effects on wound healing of zinc oxide in a hydrocolloid dressing. J Am Acad Dermatol 29:221–227

    Article  PubMed  Google Scholar 

  20. Henzel JH, DeWeese MS, Lichti EL (1970) Zinc concentrations within healing wounds. Significance of postoperative zincuria on availability and requirements during tissue repair. Arch Surg 100:349–357

    Article  PubMed  CAS  Google Scholar 

  21. Berger MM, Baines M, Raffoul W, Benathan M, Chiolero RL, Reeves C, Revelly JP, Cayeux MC, Senechaud I, Shenkin A (2007) Trace element supplementation after major burns modulates antioxidant status and clinical course by way of increased tissue trace element concentrations. Am J Clin Nutr 85:1293–1300

    PubMed  CAS  Google Scholar 

  22. Berger MM, Binnert C, Chiolero RL, Taylor W, Raffoul W, Cayeux MC, Benathan M, Shenkin A, Tappy L (2007) Trace element supplementation after major burns increases burned skin trace element concentrations and modulates local protein metabolism but not whole-body substrate metabolism. Am J Clin Nutr 85:1301–1306

    PubMed  CAS  Google Scholar 

  23. Ågren MS, Ostenfeld U, Kallehave F, Gong Y, Raffn K, Crawford ME, Kiss K, Friis-Møller A, Gluud C, Jorgensen LN (2006) A randomized, double-blind, placebo-controlled multicenter trial evaluating topical zinc oxide for acute open wounds following pilonidal disease excision. Wound Repair Regen 14:526–535

    Article  PubMed  Google Scholar 

  24. Trøstrup H, Lundquist R, Christensen LH, Jorgensen LN, Karlsmark T, Haab BB, Ågren MS (2011) S100A8/A9 deficiency in nonhealing venous leg ulcers uncovered by multiplexed antibody microarray profiling. Br J Dermatol 165:292–301

    Article  PubMed  Google Scholar 

  25. Healy J, Tipton K (2007) Ceruloplasmin and what it might do. J Neural Transm 114:777–781

    Article  PubMed  CAS  Google Scholar 

  26. Panichi V, Taccola D, Rizza GM, Consani C, Migliori M, Filippi C, Paoletti S, Sidoti A, Borracelli D, Panicucci E, Giovannini L (2004) Ceruloplasmin and acute phase protein levels are associated with cardiovascular disease in chronic dialysis patients. J Nephrol 17:715–720

    PubMed  CAS  Google Scholar 

  27. Edvinsson M, Frisk P, Molin Y, Hjelm E, Ilback NG (2008) Trace element balance is changed in infected organs during acute Chlamydophila pneumoniae infection in mice. Biometals 21:229–237

    Article  PubMed  CAS  Google Scholar 

  28. Shanbhogue LK, Paterson N (1990) Effect of sepsis and surgery on trace minerals. JPEN J Parenter Enteral Nutr 14:287–289

    Article  PubMed  CAS  Google Scholar 

  29. Achard ME, Stafford SL, Bokil NJ, Chartres J, Bernhardt PV, Schembri MA, Sweet MJ, McEwan AG (2012) Copper redistribution in murine macrophages in response to Salmonella infection. Biochem J 444:51–57

    Article  PubMed  CAS  Google Scholar 

  30. Craig GM, Evans SJ, Brayshaw BJ (1990) An inverse relationship between serum zinc and C-reactive protein levels in acutely ill elderly hospital patients. Postgrad Med J 66:1025–1028

    Article  PubMed  CAS  Google Scholar 

  31. Oakes EJ, Lyon TD, Duncan A, Gray A, Talwar D, O’Reilly DS (2008) Acute inflammatory response does not affect erythrocyte concentrations of copper, zinc and selenium. Clin Nutr 27:115–120

    Article  PubMed  CAS  Google Scholar 

  32. Buyukkocak U, Daphan C, Caglayan O, Aydinuraz K, Kaya T, Saygun O, Agalar F (2006) Effects of different anesthetic techniques on serum leptin, C-reactive protein, and cortisol concentrations in anorectal surgery. Croat Med J 47:862–868

    PubMed  CAS  Google Scholar 

  33. Kraft CN, Krüger T, Westhoff J, Lüring C, Weber O, Wirtz DC, Pennekamp PH (2011) CRP and leukocyte-count after lumbar spine surgery: fusion vs. nucleotomy. Acta Orthop 82:489–493

    Article  PubMed  Google Scholar 

  34. Berry DP, Harding KG, Stanton MR, Jasani B, Ehrlich HP (1998) Human wound contraction: collagen organization, fibroblasts, and myofibroblasts. Plast Reconstr Surg 102:124–131

    Article  PubMed  CAS  Google Scholar 

  35. Boyce DE, Jones WD, Ruge F, Harding KG, Moore K (2000) The role of lymphocytes in human dermal wound healing. Br J Dermatol 143:59–65

    Article  PubMed  CAS  Google Scholar 

  36. Roy S, Khanna S, Rink C, Biswas S, Sen CK (2008) Characterization of the acute temporal changes in excisional murine cutaneous wound inflammation by screening of the wound-edge transcriptome. Physiol Genomics 34:162–184

    Article  PubMed  CAS  Google Scholar 

  37. Tarnow P, Ågren M, Steenfos H, Jansson JO (1994) Topical zinc oxide treatment increases endogenous gene expression of insulin-like growth factor-1 in granulation tissue from porcine wounds. Scand J Plast Reconstr Surg Hand Surg 28:255–259

    Article  PubMed  CAS  Google Scholar 

  38. Ågren MS, Chvapil M, Franzén L (1991) Enhancement of re-epithelialization with topical zinc oxide in porcine partial-thickness wounds. J Surg Res 50:101–105

    Article  PubMed  Google Scholar 

  39. Das I (1985) Raised C-reactive protein levels in serum from smokers. Clin Chim Acta 153:9–13

    Article  PubMed  CAS  Google Scholar 

  40. Richard MJ, Guiraud P, Leccia MT, Beani JC, Favier A (1993) Effect of zinc supplementation on resistance of cultured human skin fibroblasts toward oxidant stress. Biol Trace Elem Res 37:187–199

    Article  PubMed  CAS  Google Scholar 

  41. Maquart FX, Bellon G, Chaqour B, Wegrowski J, Patt LM, Trachy RE, Monboisse JC, Chastang F, Birembaut P, Gillery P et al (1993) In vivo stimulation of connective tissue accumulation by the tripeptide-copper complex glycyl-L-histidyl-L-lysine-Cu2+ in rat experimental wounds. J Clin Invest 92:2368–2376

    Article  PubMed  CAS  Google Scholar 

  42. Borkow G, Gabbay J, Dardik R, Eidelman AI, Lavie Y, Grunfeld Y, Ikher S, Huszar M, Zatcoff RC, Marikovsky M (2010) Molecular mechanisms of enhanced wound healing by copper oxide-impregnated dressings. Wound Repair Regen 18:266–275

    Article  PubMed  Google Scholar 

  43. Cangul IT, Gul NY, Topal A, Yilmaz R (2006) Evaluation of the effects of topical tripeptide-copper complex and zinc oxide on open-wound healing in rabbits. Vet Dermatol 17:417–423

    Article  PubMed  Google Scholar 

  44. Michaëlsson G, Ljunghall K, Danielson BG (1980) Zinc in epidermis and dermis in healthy subjects. Acta Derm Venereol 60:295–299

    PubMed  Google Scholar 

  45. Pirot F, Panisset F, Agache P, Humbert P (1996) Simultaneous absorption of copper and zinc through human skin in vitro: influence of counter-ion and vehicle. Skin Pharmacol 9:43–52

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by The Pharmacy Foundation of 1991, Denmark and The Bispebjerg Hospital Foundation for Young Researchers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magnus S. Ågren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mirastschijski, U., Martin, A., Jorgensen, L.N. et al. Zinc, Copper, and Selenium Tissue Levels and Their Relation to Subcutaneous Abscess, Minor Surgery, and Wound Healing in Humans. Biol Trace Elem Res 153, 76–83 (2013). https://doi.org/10.1007/s12011-013-9658-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-013-9658-z

Keywords

Navigation