Skip to main content
Log in

Effects of Copper Supplementation on the Structure and Content of Elements in Kidneys of Mosaic Mutant Mice

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Menkes disease is an effect of ATP7A gene mutation in humans, coding the Cu-ATP-ase which is essential in intestinal copper absorption and its subsequent transfer to circulation. This mutation results in a deficiency of copper in all tissues except the epithelia of intestine and kidney tubules. Subcutaneous injection of copper ions is the main therapy for Menkes patients. Mosaic (Atp7amo-ms) mice closely simulate the situation in Menkes disease. The aim of this study was to evaluate the changes in structure and element content in kidneys of mosaic mice after copper supplementation. Hematoxylin–eosin staining was used to analyze tissue morphology and atomic absorption spectrometry to estimate Cu and Zn content. X-ray microanalysis was performed to measure Na, Mg, P, Cl, and K content in the cells of the proximal and distal tubules. Copper administration lengthened the lifespan of the mutants but led to its high accumulation and results in severe kidney damage. Karyomegalia, necrosis of tubular and Bowman’s capsule epithelium, lesions, and atrophy of glomeruli were observed in the treated mutants. Copper treatment afterwards led to sclerosis of glomeruli and tubules enhanced proliferation of epithelial cells and formation of both polycystic and papillary carcinoma patterns in kidney. We suggest that copper excess may impair the activity of Na+/K+ ATP-ase in renal tubules of ms/− males. The content of Mg, P, and Cl in kidneys in mutants was also changed after copper administration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Danks DM (1988) Copper deficiency in humans. Ann Rev Nutr 8:253–257

    Google Scholar 

  2. La Fontaine S, Firth SD, Lockhart PJ et al (1999) Intracellular localization and loss of copper responsivenessof Mnk, the murine homology of the Menkes protein, in cells from blotchy (Moblo) and brindled (Mobr) mouse mutants. Hum Molec Genet 8:1069–1075

    Article  PubMed  Google Scholar 

  3. Lutsenko S, Petris MJ (2002) Function and regulation of the mammalian copper-transporting ATPases: insights from biochemical and cell biological approaches. Membrane Biol 191:1–12

    Google Scholar 

  4. Cobold CH, Coventry J, Ponnambalam S et al (2003) The Menkes disease ATPase (ATP7A) is internalized via a Rac1-regulated, clatrin- and caveolae-independent pathway. Hum Molec Genet 12:1523–1533

    Article  Google Scholar 

  5. Tumer Z (1998) Genetics of Menkes disease. J Trace Elem Exper Med 11:147–161

    Article  CAS  Google Scholar 

  6. La Fontaine S, Mercer JFB (2007) Trafficking of the copper-ATPases, ATP7A and ATP7B: role in copper homeostasis. Arch Biochem Biophys 463:149–167

    Article  PubMed  Google Scholar 

  7. Bauerly KA, Kelleher SL, Lonnerdal B (2005) Effects of copper supplementation on copper absorption, tissue distribution and copper transporter expression in an infant rat model. Am J Pysiol Gastrointest Liver Physiol 288:G1007–G1014

    Article  CAS  Google Scholar 

  8. Kodama H, Murata Y, Kobayashi M (1999) Clinical manifestation and treatment of Menkes disease and its variants. Pediatr Intern 41:423–429

    Article  CAS  Google Scholar 

  9. Mercer JFB (1998) Menkes syndrome and animal models. Am J Clin Nutr 67:1022S–8S

    CAS  PubMed  Google Scholar 

  10. Proud VK, Musslel HG, Kaler SG et al (1996) Distinctive Menkes disease variant with occipital horns: delineation of natural history and clinical phenotype. Am J Med Genet 65:44–51

    Article  CAS  PubMed  Google Scholar 

  11. Kodama H, Gu YH, Mizunuma M (2001) Drug targets in Menkes disease—prospective developments. Expert Opin Ther Targets 5:625–635

    Article  CAS  PubMed  Google Scholar 

  12. Christodoulou J, Danks DM, Sarkar B et al (1998) Early treatment of Menkes disease with parenteral copper-histidine; long-term follow-up of four treated patients. Am J Med Genet 76:154–164

    Article  CAS  PubMed  Google Scholar 

  13. Munakata M, Sakamoto O, Kitamura T et al (2005) The effect of copper-histidine therapy on brain metabolism in patient with Menkes disease: a proton magnetic resonance spectroscopic study. Brain Develop 27:297–14

    Article  Google Scholar 

  14. Levinson B, Vulpe C, Elder B et al (1994) The mottled gene is the mouse homologue of the Menkes disease gene. Nature Genet 6:369–373

    Article  CAS  PubMed  Google Scholar 

  15. Styrna J (1977) Analysis of causes of lethality in mice with the Ms (Mosaic) gene. Genet Polon 18:61–79

    CAS  Google Scholar 

  16. Reed V, Boyd Y (1997) Mutation analysis provides additional proof that mottled is the mouse homologue of Menkes disease. Hum Molec Genet 6:417–423

    Article  CAS  PubMed  Google Scholar 

  17. Lenartowicz M, Grzmil P, Rusin M, Styrna J (2004) Alternative splicing in the Atp7a gene in Cu deficient mosaic mutation in mice. Folia Biologica (Krakow) 52:219–223

    Article  CAS  Google Scholar 

  18. Kotula Balak M, Lenartowicz M, Kowal M et al (2007) Testicular morphology and expression of aromatase in testes of mice with mosaic mutation. Theriogenology 67:423–434

    Article  CAS  PubMed  Google Scholar 

  19. Lenartowicz M, Sasuła K (2000) Altered copper metabolism in the Mosaic mutant mice. Nutr Res 10:1519–1529

    Article  Google Scholar 

  20. Lenartowicz M, Sasuła K, Zawadowska B (2001) Alterations in kidney morphology and histology of mice with mosaic mutation. Folia Histochem Cytobiol 39:275–281

    CAS  PubMed  Google Scholar 

  21. Tylko G, Kilarski W (1999) Different methods of tissue preparation for X-ray microanalysis combined with scanning electron microscopy based on zebra fish, Brachydanio rerio muscle fibres. Folia Histochem Cytobiol 37:255–259

    CAS  PubMed  Google Scholar 

  22. Tylko G, Banach Z, Kilarski W (2004) PROZA and calibration curves for quantitative X-ray microanalysis of biological samples. Microchim Acta 144:271–276

    Article  CAS  Google Scholar 

  23. Amin MB, Corless CL, Renshaw AA et al (1997) Papillary (chromophil) renal cell carcinoma: histomorphologic characteristics and evaluation of conventional pathologic prognostic parameters in 62 cases. Am J Surg Pathol 21:621–635

    Article  CAS  PubMed  Google Scholar 

  24. Philips M, Camakaris J, Danks DM (1991) A comparison of phenotype and copper distribution in blotchy and brindled mutant mice and in nutritionally copper deficient controls. Biol Trace Elem Res 29:11–29

    Article  Google Scholar 

  25. Kirby JB, Danks DM, Legge GJF et al (1998) Analysis of the distribution of Cu, Fe and Zn and other elements in brindled mouse kidney using a scanning proton microprobe. J Inorg Biochem 71:189–197

    Article  CAS  PubMed  Google Scholar 

  26. Suzuki-Kurasaki M, Okabe M, Kurasaki M (1997) Copper-metallothionein in the kidney of macular mice: a model for Menkes disease. J Histochem Cytochem 45:1493–1501

    CAS  PubMed  Google Scholar 

  27. Kodama H, Abe T, Takama M et al (1993) Histochemical localization of copper in the intestine and kidney of macular mice: light and electron microscopic study. J Histochem Cytochem 41:529–1535

    Google Scholar 

  28. Lenartowicz M, Kowal M, Buda-Lewandowska D et al (2003) Pathological structure of the kidney from the adult mice with mosaic mutation. J Inher Metabol Dis 26:1–13

    Google Scholar 

  29. Kriz W, Le Hir M (2005) Pathways to nephron loss starting from glomerular disease—insights from animal models. Kidney Intern 67:404–419

    Article  Google Scholar 

  30. Le Hir M, Besse-Eschmann V (2003) A novel mechanism of nephron loss in a murine model of crescentic glomeruloephritis. Kidney Intern 63:591–599

    Article  Google Scholar 

  31. Woolf AS (1997) The biology of kidney malformations. In: Thorogood P (ed) Embryos, genes and birth defects. Wiley, New York 303–327

  32. Cossu-Rocca P, Eble JN, Zhang S et al (2006) Acquired cystic disease-associated renal tumors: an immunohistochemical and fluorescence in situ hybridization study. Mol Pathol 19:780–7

    CAS  Google Scholar 

  33. Tickoo SK, dePeralta-Venturina MN, Harik LR et al (2006) Spectrum of epithelial neoplasms in end-stage renal disease: an experience from 66 tumor-bearing kidneys with emphasis on histologic patterns distinct from those in sporadic adult renal neoplasia. Am J Surg Pathol 30:141–53

    Article  PubMed  Google Scholar 

  34. Truong LD, Choi YJ, Shen SS et al (2003) Renal cystic neoplasms and renal neoplasms associated with cystic renal diseases: pathogenetic and molecular links. Adv Anat Pathol 10:135–59

    Article  CAS  PubMed  Google Scholar 

  35. Kowal M, Lenartowicz M (2002) Kidney copper contents and urine analysis of the adult mosaic mutant males intact and after copper injection. Materials of 11th International Symposium of Polish Network of Molecular and Cellular Biology UNESCO/PAS “Molecular and Physiological Aspects of Regulatory Processes of the Organism” Cracow 2002, pp. 140–141.

  36. Efendiev R, Bertorello AM, Zandomeni R et al (2002) Agonist-dependent regulation of renal Na+, K+-ATPase activity is modulated by intracellular sodium concentration. J Biol Chem 277:1489–11496

    Google Scholar 

  37. Hinojos CA, Doris PA (2004) Altered subcellular distribution of Na+, K+-ATP-ase in the proximal tubules in young spontaneously hypertensive rats. Hypertension 44:95–100

    Article  CAS  PubMed  Google Scholar 

  38. Sabolic I, Herak-Kramberger CM, Antolovic R et al (2006) Loss of basolateral invaginations in proximal tubules of cadmium-intoxicated rats is independent of microtubules and clathrin. Toxicol 18:149–163

    Article  Google Scholar 

  39. Konrad M, Schlingmann KP, Gudermann T (2004) Insight into molecular nature of magnesium homeostasis. Am J Physiol Renal Physiol 286:599–605

    Article  Google Scholar 

  40. Meij IC, Koenderink JB, van Bokhoven H et al (2000) Dominant isolated renal magnesium loss is caused by misrouting of Na+, K+-ATP-ase γ-subunit. Nature Genet 26:265–266

    Article  CAS  PubMed  Google Scholar 

  41. Kinne-Saffran E, Hulseweh M, Pffaf CH et al (1993) Inhibition of Na/K-ATPases by cadmium: different mechanism in different species. Toxicol Appl Pharmacol 121:22–29

    Article  CAS  PubMed  Google Scholar 

  42. Kramer HJ, Gonic HC, Lu E (1986) In vitro inhibition of Na-K-ATPase by trace metals relation to renal and cardiovascular damage. Nephron 44:329–336

    Article  CAS  PubMed  Google Scholar 

  43. Thevenod F, Friedman JM (1999) Cadmium mediate oxidative stress in the kidney proximal tubule cells induces degradation of Na/K-ATPase through proteasomal and endo-lysosomal proteolytic pathways. FASEB J 13:1751–1761

    CAS  PubMed  Google Scholar 

  44. Yiin SJ, Chern CL, Sheu JY et al (1999) Cadmium-induced renal lipid peroxidation in rats and protection by selenium. J Toxicol Environ Health A 57:403–413

    Article  CAS  PubMed  Google Scholar 

  45. Pena MMO, Koch KA, Thiele DJ (1998) Dynamic regulation of copper uptake and detoxification genes in Saccharomyces cerevisiae. Mol Cell Biol 18:2514–2523

    CAS  PubMed  Google Scholar 

  46. Prohaska J (1998) Neurochemical roles of copper as antioxidant or prooxidant. In: Connor JR (ed) Metals and oxidative damage in neurological disorders. Plenum, New York, pp 57–75

    Google Scholar 

  47. Pourahmad J, O’Brein PJ, Jokar F et al (2003) Carcinogenic metal induces sites of reactive oxygen species formation in hepatocytes. Toxicol in vitro 17:803–810

    Article  CAS  PubMed  Google Scholar 

  48. Strain JJ (1994) Newer aspects of micronutrients in chronic disease: copper. Proc Nutr Soc 53:583–598

    Article  CAS  PubMed  Google Scholar 

  49. Prohaska J (1983) Changes in tissue growth, concentration of copper, iron, cytochrome oxidase and superoxide dismutase subsequent to dietary or genetic copper deficiency in mice. J Nutr 113:2048–2058

    CAS  PubMed  Google Scholar 

  50. Tepel M, Jankowski J, Ruess C et al (1998) Activation of Na+, H+ exchanger produces vasoconstriction of renal resistance vessels. Am J Hypertens 11:1214–21

    Article  CAS  PubMed  Google Scholar 

  51. Jentsch T (2005) Chloride transport in the kidney: lessons from human disease and knockout mice. J Am Soc Nephrol 16:1549–1561

    Article  CAS  PubMed  Google Scholar 

  52. Planelles G (2004) Chloride transport in the renal proximal tubule. Pflugers Arch Eur J Physiol 44:561–570

    Google Scholar 

  53. Wang CZ, Yano H, Nagashima K et al (2000) The Na+-driven Cl/HCO 3 exchanger. J Biol Chem 275:35486–35490

    Article  CAS  PubMed  Google Scholar 

  54. Forster IC, Hernando N, Biber J et al (2006) Proximal tubular handling of phosphate: a molecular perspective. Kidney Int 70:1548–1559

    Article  CAS  PubMed  Google Scholar 

  55. Forster IC, Loo DD, Eskandri S (1998) Stoichiometry and Na+ binding cooperativity of rat and flounder renal type II Na+–Pi cotransporter. Am J Physiol 276:F644–F649

    Google Scholar 

  56. Murer H, Hernando N, Forster I et al (2000) Proximal tubular phosphate reabsorption: molecular mechanisms. Physiol Rev 80:1373–409

    CAS  PubMed  Google Scholar 

  57. Ahn DW, Park YS (1995) Transport of inorganic phosphate in renal cortical brush-border membrane vesicles of cadmium-intoxicated rats. Toxicol Appl Pharmacol 133:239–43

    Article  CAS  PubMed  Google Scholar 

  58. Herak-Kramberger CM, Spindler B, Biber J et al (1996) Renal type II Na/Pi-cotransporters is strongly impaired whereas the Na/sulphate cotransporter and aquaporin 1 are unchanged in cadmium-treated rats. Pflugers Arch 432:336–344

    Article  CAS  PubMed  Google Scholar 

  59. Wagner CA, Waldegger S, Osswald H et al (1996) Heavy metals inhibit Pi-induced currents through human brush-border NaPi-3 cotransporter in Xenopus oocytes. Am J Physiol 271:F926–F930

    CAS  PubMed  Google Scholar 

  60. Heydron K, Damagaaed E, Horn N et al (1995) Comparison of trace element distribution in occipital horn syndrome and Menkes disease with normal subject by neutron activation analysis. J Trace Elem Exp Med 8:241–247

    Article  Google Scholar 

  61. Zaffanello M, Maffeis C, Fanos et al (2006) Urological complication and copper replacement in childhood Menkes syndrome. Acta Pediatr 95:785–790

    Article  Google Scholar 

  62. Kageyama S, Okada Y, Konishi T et al (1997) Menkes’ kinky hair disease associated with a large bladder diventriculum: a case report. Int J Urol 4:318–320

    Article  CAS  PubMed  Google Scholar 

  63. Oshio T, Hino M, Krino A et al (1997) Urologic abnormalities in Menkes kinky hair disease: report of three cases. J Pediatr Sur 32:782–784

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Professor Henryk Kozłowski, University of Wrocław, Poland, for the critical reading of the manuscript. This work was supported by grant DS/BiNoZ/IZ/775/2008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Małgorzata Lenartowicz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lenartowicz, M., Windak, R., Tylko, G. et al. Effects of Copper Supplementation on the Structure and Content of Elements in Kidneys of Mosaic Mutant Mice. Biol Trace Elem Res 136, 204–220 (2010). https://doi.org/10.1007/s12011-009-8533-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-009-8533-4

Keywords

Navigation