Skip to main content

Advertisement

Log in

Neuroimaging and Biomarkers in Addiction Treatment

  • Substance Use and Related Disorders (F Levin and E Dakwar, Section Editors)
  • Published:
Current Psychiatry Reports Aims and scope Submit manuscript

Abstract

Neuroimaging studies have made a significant contribution to the efforts to identify measurable indices, or biomarkers, of addictions and their treatments. Biomarkers in addiction treatment are needed to provide targets for treatment, detect treatment subgroups, predict treatment response, and broadly improve outcomes. Neuroimaging is important to biomarkers research as it relates neural circuits to both molecular mechanisms and behavior. A focus of recent efforts in neuroimaging in addiction has been to elucidate the neural correlates associated with dimensions of functioning in substance-use and related disorders, such as cue-reactivity, impulsivity, and cognitive control, among others. These dimensions of functioning have been related to addiction treatment outcomes and relapse, and therefore, a better understanding of these dimensions and their neural correlates may help to identify brain-behavior biomarkers of treatment response. This paper reviews recent neuroimaging studies that report potential biomarkers in addiction treatment related to cue-reactivity, impulsivity, and cognitive control, as well as recent advances in neuroimaging that may facilitate efforts to determine reliable biomarkers. This important initial work has begun to identify possible mediators and moderators of treatment response, and multiple promising indices are being tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Volkow ND, Baler RD, Goldstein RZ. Addiction: pulling at the neural threads of social behaviors. Neuron. 2011;69(4):599–602. doi:10.1016/j.neuron.2011.01.027.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. De Gruttola VG, Clax P, DeMets DL, Downing GJ, Ellenberg SS, Friedman L, et al. Considerations in the evaluation of surrogate endpoints in clinical trials. Summary of a National Institutes of Health workshop. Control Clin Trials. 2001;22(5):485–502.

    Article  PubMed  Google Scholar 

  3. Cuthbert BN, Insel TR. Toward the future of psychiatric diagnosis: the seven pillars of RDoC. 2013;11:126. doi:10.1186/1741-7015-11-126.

  4. Insel T, Cuthbert B, Garvey M, Heinssen R, Pine DS, Quinn K, et al. Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. AJ Psychiatry. 2010;167(7):748–51. doi:10.1176/appi.ajp.2010.09091379.

    Article  Google Scholar 

  5. Drummond DC. What does cue-reactivity have to offer clinical research? Addiction. 2000;95 Suppl 2:S129–44.

    Article  PubMed  Google Scholar 

  6. Volkow ND, Baler RD. Brain imaging biomarkers to predict relapse in alcohol addiction. JAMA Psychiatry. 2013;70(7):661–3. doi:10.1001/jamapsychiatry.2013.1141.

    Article  PubMed  Google Scholar 

  7. Lauritzen M. Reading vascular changes in brain imaging: is dendritic calcium the key? Nat Rev Neurosci. 2005;6(1):77–85. doi:10.1038/nrn1589.

    Article  CAS  PubMed  Google Scholar 

  8. Laird AR, Fox PM, Price CJ, Glahn DC, Uecker AM, Lancaster JL, et al. ALE meta-analysis: controlling the false discovery rate and performing statistical contrasts. Hum Brain Mapp. 2005;25(1):155–64. doi:10.1002/hbm.20136.

    Article  PubMed  Google Scholar 

  9. Engelmann JM, Versace F, Robinson JD, Minnix JA, Lam CY, Cui Y, et al. Neural substrates of smoking cue reactivity: a meta-analysis of fMRI studies. Neuroimage. 2012;60(1):252–62. doi:10.1016/j.neuroimage.2011.12.024.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Chase HW, Eickhoff SB, Laird AR, Hogarth L. The neural basis of drug stimulus processing and craving: an activation likelihood estimation meta-analysis. Biol Psychiatry. 2011;70(8):785–93. doi:10.1016/j.biopsych.2011.05.025. Quantitative meta-analysis providing consensus across neuroimaging studies of cue-reactivity to drug and non-drug addiction-related cues and craving.

    Article  PubMed  Google Scholar 

  11. Kuhn S, Gallinat J. Common biology of craving across legal and illegal drugs—a quantitative meta-analysis of cue-reactivity brain response. Eur J Neurosci. 2011;33(7):1318–26. doi:10.1111/j.1460-9568.2010.07590.x.

    Article  PubMed  Google Scholar 

  12. Schacht JP, Anton RF, Myrick H. Functional neuroimaging studies of alcohol cue reactivity: a quantitative meta-analysis and systematic review. Addict Biol. 2013;18(1):121–33. doi:10.1111/j.1369-1600.2012.00464.x.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Tang DW, Fellows LK, Small DM, Dagher A. Food and drug cues activate similar brain regions: a meta-analysis of functional MRI studies. Physiol Behav. 2012;106(3):317–24. doi:10.1016/j.physbeh.2012.03.009.

    Article  CAS  PubMed  Google Scholar 

  14. Jasinska AJ, Stein EA, Kaiser J, Naumer MJ, Yalachkov Y. Factors modulating neural reactivity to drug cues in addiction: a survey of human neuroimaging studies. Neurosci Biobehav Rev. 2014;38:1–16. doi:10.1016/j.neubiorev.2013.10.013.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Seo D, Lacadie CM, Tuit K, Hong KI, Constable RT, Sinha R. Disrupted ventromedial prefrontal function, alcohol craving, and subsequent relapse risk. JAMA Psychiatry. 2013;70(7):727–39. doi:10.1001/jamapsychiatry.2013.762. fMRI study reporting a potential brain biomarker of alcohol cue-reactivity prospectively related to treatment relapse.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Beck A, Wustenberg T, Genauck A, Wrase J, Schlagenhauf F, Smolka MN, et al. Effect of brain structure, brain function, and brain connectivity on relapse in alcohol-dependent patients. Arch Gen Psychiatry. 2012;69(8):842–52. doi:10.1001/archgenpsychiatry.2011.2026.

    Article  PubMed  Google Scholar 

  17. Janes AC, Pizzagalli DA, Richardt S, de Frederick B, Chuzi S, Pachas G, et al. Brain reactivity to smoking cues prior to smoking cessation predicts ability to maintain tobacco abstinence. Biol Psychiatry. 2010;67(8):722–9. doi:10.1016/j.biopsych.2009.12.034.

    Article  PubMed Central  PubMed  Google Scholar 

  18. LaConte SM, King-Casas B, Cinciripini PM, Eagleman DM, Versace F, Chiu PH. Modulating rt-fMRI neurofeedback interfaces via craving and control in chronic smokers. Neuroimage. 2009;47(Supplement 1):S45–S.

    Article  Google Scholar 

  19. LaConte SM. Decoding fMRI brain states in real-time. Neuroimage. 2011;56(2):440–54. doi:10.1016/j.neuroimage.2010.06.052.

    Article  PubMed  Google Scholar 

  20. Garrison KA, Scheinost D, Worhunsky PD, Elwafi HM, Thornhill TA, Thompson E, et al. Real-time fMRI links subjective experience with brain activity during focused attention. Neuroimage. 2013;81:110–8. doi:10.1016/j.neuroimage.2013.05.030.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Stoeckel LE, Garrison KA, Ghosh S, Wighton P, Hanlon CA, Gilman JM, et al. Optimizing real time fMRI neurofeedback for therapeutic discovery and development. Neuroimage Clin. 2014;5:245–55. doi:10.1016/j.nicl.2014.07.002.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Canterberry M, Hanlon CA, Hartwell KJ, Li X, Owens M, LeMatty T, et al. Sustained reduction of nicotine craving with real-time neurofeedback: exploring the role of severity of dependence. Nicotine Tob Res: Off J Soc Res Nicotine Tob. 2013;15(12):2120–4. doi:10.1093/ntr/ntt122.

    Article  CAS  Google Scholar 

  23. Hanlon CA, Hartwell KJ, Canterberry M, Li X, Owens M, Lematty T, et al. Reduction of cue-induced craving through realtime neurofeedback in nicotine users: the role of region of interest selection and multiple visits. Psychiatry Res. 2013;213(1):79–81. doi:10.1016/j.pscychresns.2013.03.003.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Dalley JW, Everitt BJ, Robbins TW. Impulsivity, compulsivity, and top-down cognitive control. Neuron. 2011;69(4):680–94. doi:10.1016/j.neuron.2011.01.020.

    Article  CAS  PubMed  Google Scholar 

  25. Robbins T, Curran H, de Wit H. Special issue on impulsivity and compulsivity. Psychopharmacology (Berl). 2012;219(2):251–2. doi:10.1007/s00213-011-2584-x.

    Article  CAS  Google Scholar 

  26. Potenza MN, Sofuoglu M, Carroll KM, Rounsaville BJ. Neuroscience of behavioral and pharmacological treatments for addictions. Neuron. 2011;69(4):695–712. doi:10.1016/j.neuron.2011.02.009.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Stevens L, Verdejo-Garcia A, Goudriaan AE, Roeyers H, Dom G, Vanderplasschen W. Impulsivity as a vulnerability factor for poor addiction treatment outcomes: a review of neurocognitive findings among individuals with substance use disorders. J Subst Abuse Treat. 2014;47(1):58–72. doi:10.1016/j.jsat.2014.01.008.

    Article  PubMed  Google Scholar 

  28. Loree AM, Lundahl LH, Ledgerwood DM. Impulsivity as a predictor of treatment outcome in substance use disorders: review and synthesis. Drug Alcohol Rev. 2014. doi:10.1111/dar.12132.

    PubMed  Google Scholar 

  29. Fineberg NA, Chamberlain SR, Goudriaan AE, Stein DJ, Vanderschuren LJ, Gillan CM, et al. New developments in human neurocognition: clinical, genetic, and brain imaging correlates of impulsivity and compulsivity. CNS Spectrums. 2014;19(1):69–89. doi:10.1017/S1092852913000801.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Jupp B, Dalley JW. Behavioral endophenotypes of drug addiction: etiological insights from neuroimaging studies. Neuropharmacology. 2014;76:Pt B:487–97. doi:10.1016/j.neuropharm.2013.05.041.

    Article  Google Scholar 

  31. Parvaz MA, Alia-Klein N, Woicik PA, Volkow ND, Goldstein RZ. Neuroimaging for drug addiction and related behaviors. Rev Neurosci. 2011;22(6):609–24. doi:10.1515/RNS.2011.055.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Volkow ND, Wang GJ, Fowler JS, Tomasi D, Telang F. Addiction: beyond dopamine reward circuitry. Proc Natl Acad Sci U S A. 2011;108(37):15037–42. doi:10.1073/pnas.1010654108.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Martinez D, Carpenter KM, Liu F, Slifstein M, Broft A, Friedman AC, et al. Imaging dopamine transmission in cocaine dependence: link between neurochemistry and response to treatment. AJ Psychiatry. 2011;168(6):634–41. doi:10.1176/appi.ajp.2010.10050748.

    Article  Google Scholar 

  34. Wang GJ, Smith L, Volkow ND, Telang F, Logan J, Tomasi D, et al. Decreased dopamine activity predicts relapse in methamphetamine abusers. Mol Psychiatry. 2012;17(9):918–25. doi:10.1038/mp.2011.86.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Clark L, Stokes PR, Wu K, Michalczuk R, Benecke A, Watson BJ, et al. Striatal dopamine D(2)/D(3) receptor binding in pathological gambling is correlated with mood-related impulsivity. Neuroimage. 2012;63(1):40–6. doi:10.1016/j.neuroimage.2012.06.067.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Jia Z, Worhunsky PD, Carroll KM, Rounsaville BJ, Stevens MC, Pearlson GD, et al. An initial study of neural responses to monetary incentives as related to treatment outcome in cocaine dependence. Biol Psychiatry. 2011;70(6):553–60. doi:10.1016/j.biopsych.2011.05.008.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Yip SW, DeVito EE, Kober H, Worhunsky PD, Carroll KM, Potenza MN. Pretreatment measures of brain structure and reward-processing brain function in cannabis dependence: an exploratory study of relationships with abstinence during behavioral treatment. Drug Alcohol Depend. 2014;140:33–41. doi:10.1016/j.drugalcdep.2014.03.031.

    Article  PubMed  Google Scholar 

  38. Joos L, Goudriaan AE, Schmaal L, Fransen E, van den Brink W, Sabbe BG, et al. Effect of modafinil on impulsivity and relapse in alcohol dependent patients: a randomized, placebo-controlled trial. Eur Neuropsychopharmacol. 2013;23(8):948–55. doi:10.1016/j.euroneuro.2012.10.004.

    Article  CAS  PubMed  Google Scholar 

  39. Schmaal L, Joos L, Koeleman M, Veltman DJ, van den Brink W, Goudriaan AE. Effects of modafinil on neural correlates of response inhibition in alcohol-dependent patients. Biol Psychiatry. 2013;73(3):211–8. doi:10.1016/j.biopsych.2012.06.032.

    Article  CAS  PubMed  Google Scholar 

  40. Carter CS, van Veen V. Anterior cingulate cortex and conflict detection: an update of theory and data. Cogn Affect Behav Neurosci. 2007;7(4):367–79.

    Article  PubMed  Google Scholar 

  41. Sofuoglu M, DeVito EE, Waters AJ, Carroll KM. Cognitive enhancement as a treatment for drug addictions. Neuropharmacology. 2013;64:452–63. doi:10.1016/j.neuropharm.2012.06.021.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Luijten M, Machielsen MW, Veltman DJ, Hester R, de Haan L, Franken IH. Systematic review of ERP and fMRI studies investigating inhibitory control and error processing in people with substance dependence and behavioural addictions. J Psychiatry Neurosci. 2014;39(3):149–69.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Nestor LJ, Ghahremani DG, Monterosso J, London ED. Prefrontal hypoactivation during cognitive control in early abstinent methamphetamine-dependent subjects. Psychiatry Res. 2011;194(3):287–95. doi:10.1016/j.pscychresns.2011.04.010.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Sorg SF, Taylor MJ, Alhassoon OM, Gongvatana A, Theilmann RJ, Frank LR, et al. Frontal white matter integrity predictors of adult alcohol treatment outcome. Biol Psychiatry. 2012;71(3):262–8. doi:10.1016/j.biopsych.2011.09.022.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Worhunsky PD, Stevens MC, Carroll KM, Rounsaville BJ, Calhoun VD, Pearlson GD, et al. Functional brain networks associated with cognitive control, cocaine dependence, and treatment outcome. Psychol Addict Behav. 2013;27(2):477–88. doi:10.1037/a0029092.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Marhe R, Luijten M, Franken IH. The clinical relevance of neurocognitive measures in addiction. Front Psychiatry. 2014;4:185. doi:10.3389/fpsyt.2013.00185.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Luo X, Zhang S, Hu S, Bednarski SR, Erdman E, Farr OM, et al. Error processing and gender-shared and -specific neural predictors of relapse in cocaine dependence. Brain. 2013;136(Pt 4):1231–44. doi:10.1093/brain/awt040. fMRI study reporting reduced activity in the dorsal anterior cingulate cortex during error processing that is related prospectively to cocaine relapse and earlier time to relapse.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Marhe R, van de Wetering BJ, Franken IH. Error-related brain activity predicts cocaine use after treatment at 3-month follow-up. Biol Psychiatry. 2013;73(8):782–8. doi:10.1016/j.biopsych.2012.12.016.

    Article  CAS  PubMed  Google Scholar 

  49. MacLeod CM. Half a century of research on the Stroop effect: an integrative review. Psychol Bull. 1991;109(2):163–203.

    Article  CAS  PubMed  Google Scholar 

  50. Potenza MN, Balodis IM, Franco CA, Bullock S, Xu J, Chung T, et al. Neurobiological considerations in understanding behavioral treatments for pathological gambling. Psychol Addict Behav. 2013;27(2):380–92. doi:10.1037/a0032389.

    Article  PubMed Central  PubMed  Google Scholar 

  51. DeVito EE, Worhunsky PD, Carroll KM, Rounsaville BJ, Kober H, Potenza MN. A preliminary study of the neural effects of behavioral therapy for substance use disorders. Drug Alcohol Depend. 2012;122(3):228–35. doi:10.1016/j.drugalcdep.2011.10.002.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Brewer JA, Worhunsky PD, Carroll KM, Rounsaville BJ, Potenza MN. Pretreatment brain activation during Stroop task is associated with outcomes in cocaine-dependent patients. Biol Psychiatry. 2008;64(11):998–1004. doi:10.1016/j.biopsych.2008.05.024.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Krishnan-Sarin S, Balodis IM, Kober H, Worhunsky PD, Liss T, Xu J, et al. An exploratory pilot study of the relationship between neural correlates of cognitive control and reduction in cigarette use among treatment-seeking adolescent smokers. Psychol Addict Behav. 2013;27(2):526–32. doi:10.1037/a0032479.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Loughead J, Ray R, Wileyto EP, Ruparel K, Sanborn P, Siegel S, et al. Effects of the alpha4beta2 partial agonist varenicline on brain activity and working memory in abstinent smokers. Biol Psychiatry. 2010;67(8):715–21. doi:10.1016/j.biopsych.2010.01.016.

    Article  CAS  PubMed  Google Scholar 

  55. Ghahremani DG, Tabibnia G, Monterosso J, Hellemann G, Poldrack RA, London ED. Effect of modafinil on learning and task-related brain activity in methamphetamine-dependent and healthy individuals. Neuropsychopharmacology. 2011;36(5):950–9. doi:10.1038/npp.2010.233.

    Article  PubMed Central  PubMed  Google Scholar 

  56. Goldstein RZ, Woicik PA, Maloney T, Tomasi D, Alia-Klein N, Shan J, et al. Oral methylphenidate normalizes cingulate activity in cocaine addiction during a salient cognitive task. Proc Natl Acad Sci U S A. 2010;107(38):16667–72. doi:10.1073/pnas.1011455107.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Li CS, Morgan PT, Matuskey D, Abdelghany O, Luo X, Chang JL, et al. Biological markers of the effects of intravenous methylphenidate on improving inhibitory control in cocaine-dependent patients. Proc Natl Acad Sci U S A. 2010;107(32):14455–9. doi:10.1073/pnas.1002467107.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Sofuoglu M, Waters AJ, Poling J, Carroll KM. Galantamine improves sustained attention in chronic cocaine users. Exp Clin Psychopharmacol. 2011;19(1):11–9. doi:10.1037/a0022213.

    Article  PubMed Central  PubMed  Google Scholar 

  59. Sofuoglu M, Carroll KM. Effects of galantamine on cocaine use in chronic cocaine users. Am J Addict. 2011;20(3):302–3. doi:10.1111/j.1521-0391.2011.00130.x.

    Article  PubMed Central  PubMed  Google Scholar 

  60. Janes AC, Nickerson LD, Frederick Bde B, Kaufman MJ. Prefrontal and limbic resting state brain network functional connectivity differs between nicotine-dependent smokers and non-smoking controls. Drug Alcohol Depend. 2012;125(3):252–9. doi:10.1016/j.drugalcdep.2012.02.020.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Gordon EM, Devaney JM, Bean S, Vaidya CJ. Resting-state striato-frontal functional connectivity is sensitive to DAT1 genotype and predicts executive function. Cereb Cortex. 2013. doi:10.1093/cercor/bht229.

    Google Scholar 

  62. Muller VI, Langner R, Cieslik EC, Rottschy C, Eickhoff SB. Interindividual differences in cognitive flexibility: influence of gray matter volume, functional connectivity and trait impulsivity. Brain Struct Funct. 2014. doi:10.1007/s00429-014-0797-6.

    Google Scholar 

  63. Sutherland MT, McHugh MJ, Pariyadath V, Stein EA. Resting state functional connectivity in addiction: lessons learned and a road ahead. Neuroimage. 2012;62(4):2281–95. doi:10.1016/j.neuroimage.2012.01.117.

    Article  PubMed Central  PubMed  Google Scholar 

  64. Camchong J, Stenger A, Fein G. Resting-state synchrony during early alcohol abstinence can predict subsequent relapse. Cereb Cortex. 2013;23(9):2086–99. doi:10.1093/cercor/bhs190.

    Article  PubMed Central  PubMed  Google Scholar 

  65. McHugh MJ, Demers CH, Salmeron BJ, Devous Sr MD, Stein EA, Adinoff B. Cortico-amygdala coupling as a marker of early relapse risk in cocaine-addicted individuals. Front Psychiatry. 2014;5:16. doi:10.3389/fpsyt.2014.00016.

    Article  PubMed Central  PubMed  Google Scholar 

  66. Konova AB, Moeller SJ, Tomasi D, Volkow ND, Goldstein RZ. Effects of methylphenidate on resting-state functional connectivity of the mesocorticolimbic dopamine pathways in cocaine addiction. JAMA Psychiatry. 2013;70(8):857–68. doi:10.1001/jamapsychiatry.2013.1129. Resting state fMRI study of a pharmacological intervention for cocaine addiction demonstrating that changes in functional connectivity may be a potential mechanism of treatment effects.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Schmaal L, Goudriaan AE, Joos L, Kruse AM, Dom G, van den Brink W, et al. Modafinil modulates resting-state functional network connectivity and cognitive control in alcohol-dependent patients. Biol Psychiatry. 2013;73(8):789–95. doi:10.1016/j.biopsych.2012.12.025.

    Article  CAS  PubMed  Google Scholar 

  68. Cole DM, Oei NY, Soeter RP, Both S, van Gerven JM, Rombouts SA, et al. Dopamine-dependent architecture of cortico-subcortical network connectivity. Cereb Cortex. 2013;23(7):1509–16. doi:10.1093/cercor/bhs136.

    Article  PubMed  Google Scholar 

  69. Lerman C, Gu H, Loughead J, Ruparel K, Yang Y, Stein EA. Large-scale brain network coupling predicts acute nicotine abstinence effects on craving and cognitive function. JAMA Psychiatry. 2014;71(5):523–30. doi:10.1001/jamapsychiatry.2013.4091. Resting state fMRI connectivity study linking an index of large-scale network dynamics to craving and withdrawal during short-term abstinence, with implications for treatment.

    Article  PubMed Central  PubMed  Google Scholar 

  70. Laird AR, Eickhoff SB, Rottschy C, Bzdok D, Ray KL, Fox PT. Networks of task co-activations. Neuroimage. 2013;80:505–14. doi:10.1016/j.neuroimage.2013.04.073.

    Article  PubMed Central  PubMed  Google Scholar 

  71. Biswal BB, Mennes M, Zuo XN, Gohel S, Kelly C, Smith SM, et al. Toward discovery science of human brain function. Proc Natl Acad Sci U S A. 2010;107(10):4734–9. doi:10.1073/pnas.0911855107.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Craddock RC, Jbabdi S, Yan CG, Vogelstein JT, Castellanos FX, Di Martino A, et al. Imaging human connectomes at the macroscale. Nat Methods. 2013;10(6):524–39. doi:10.1038/nmeth.2482.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Smith SM, Vidaurre D, Beckmann CF, Glasser MF, Jenkinson M, Miller KL, et al. Functional connectomics from resting-state fMRI. Trends Cogn Sci. 2013;17(12):666–82. doi:10.1016/j.tics.2013.09.016.

    Article  PubMed Central  PubMed  Google Scholar 

  74. Kober H, Mende-Siedlecki P, Kross EF, Weber J, Mischel W, Hart CL, et al. Prefrontal-striatal pathway underlies cognitive regulation of craving. Proc Natl Acad Sci U S A. 2010;107(33):14811–6. doi:10.1073/pnas.1007779107.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Xu J, Kober H, Wang X, DeVito EE, Carroll KM, Potenza MN. Hippocampal volume mediates the relationship between measures of pre-treatment cocaine use and within-treatment cocaine abstinence. Drug Alcohol Depend. In press.

  76. Ersche KD, Jones PS, Williams GB, Turton AJ, Robbins TW, Bullmore ET. Abnormal brain structure implicated in stimulant drug addiction. Science. 2012;335(6068):601–4. doi:10.1126/science.1214463. Diffusion tensor imaging study demonstrating common structural abnormalities in brain regions implicated in self-control in drug-addicted individuals and their non-addicted siblings, suggesting a potential neurocognitive endophenotype for drug addiction.

    Article  CAS  PubMed  Google Scholar 

  77. Wagner M, Schulze-Rauschenbach S, Petrovsky N, Brinkmeyer J, von der Goltz C, Grunder G, et al. Neurocognitive impairments in non-deprived smokers—results from a population-based multi-center study on smoking-related behavior. Addict Biol. 2013;18(4):752–61. doi:10.1111/j.1369-1600.2011.00429.x.

    Article  CAS  PubMed  Google Scholar 

  78. Morgenstern J, Naqvi NH, Debellis R, Breiter HC. The contributions of cognitive neuroscience and neuroimaging to understanding mechanisms of behavior change in addiction. Psychol Addict Behav. 2013;27(2):336–50. doi:10.1037/a0032435.

    Article  PubMed Central  PubMed  Google Scholar 

  79. Robinson JL, Laird AR, Glahn DC, Lovallo WR, Fox PT. Metaanalytic connectivity modeling: delineating the functional connectivity of the human amygdala. Hum Brain Mapp. 2010;31(2):173–84. doi:10.1002/hbm.20854.

    PubMed Central  PubMed  Google Scholar 

  80. Yarkoni T, Poldrack RA, Nichols TE, Van Essen DC, Wager TD. Large-scale automated synthesis of human functional neuroimaging data. Nat Methods. 2011;8(8):665–70. doi:10.1038/nmeth.1635.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Wager TD, Lindquist M, Kaplan L. Meta-analysis of functional neuroimaging data: current and future directions. Soc Cogn Affect Neurosci. 2007;2(2):150–8.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by the following grants: National Institute on Drug Abuse (NIDA) grants P50 DA09241, P20 DA027844, and R01 DA035058 and this work was supported by an award from the American Heart Association 14CRP18200010.

Compliance with Ethics Guidelines

Conflict of Interest

Kathleen A. Garrison declares that she has no conflict of interest.

Marc N. Potenza has received financial support or compensation for the following: Dr. Potenza has consulted for and advised Boehringer Ingelheim, Lundbeck, Ironwood, Shire, and INSYS; has consulted for Somaxon; has received research support from the National Institutes of Health, Veteran’s Administration, Mohegan Sun Casino, the National Center for Responsible Gaming, and Forest Laboratories, Pfizer, Ortho-McNeil, Oy-Control/Biotie, GlaxoSmithKline, and Psyadon pharmaceuticals; has participated in surveys, mailings, or telephone consultations related to drug addiction, impulse control disorders, or other health topics; has consulted for gambling entities, law offices, and the federal public defender’s office in issues related to impulse control disorders; provides clinical care in the Connecticut Department of Mental Health and Addiction Services Problem Gambling Services Program; has performed grant reviews for the National Institutes of Health and other agencies; has guest-edited journal sections; has given academic lectures in grand rounds, CME events, and other clinical or scientific venues; and has generated books or book chapters for publishers of mental health texts.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathleen A. Garrison.

Additional information

This article is part of the Topical Collection on Substance Use and Related Disorders

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garrison, K.A., Potenza, M.N. Neuroimaging and Biomarkers in Addiction Treatment. Curr Psychiatry Rep 16, 513 (2014). https://doi.org/10.1007/s11920-014-0513-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11920-014-0513-5

Keywords

Navigation