Skip to main content

Advertisement

Log in

c-Met and hepatocyte growth factor: Potential as novel targets in cancer therapy

  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Receptor tyrosine kinases have come to fruition as therapeutic targets in a variety of malignancies. In this group of targets, the c-Met receptor tyrosine kinase plays an important role in increased cell growth, reduced apoptosis, altered cytoskeletal function, increased metastasis, and other biologic changes. The ligand for c-Met is hepatocyte growth factor (HGF), also known as scatter factor. Met is overexpressed and mutated in a variety of malignancies, among which germline mutations are of particular interest. Most mutations of Met have been found in the juxtamembrane, the tyrosine kinase, and the semaphorin domain. Met gain-of-function mutations lead to deregulated or prolonged tyrosine kinase activity, which is instrumental to its transforming activity. This review summarizes the biologic functions regulated by Met and its structural requirements as well as related developments in targeted therapy. Treatment approaches, including antagonism of HGF binding to Met, targeting of RNA and the Met protein, and inhibition of the tyrosine kinase domain of Met, are highlighted. Targeting of the HGF/Met pathway, alone or in combination with standard therapies, is likely to improve current therapies in Met-dependent malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Cooper CS, Park M, Blair DG, et al.: Molecular cloning of a new transforming gene from a chemically transformed human cell line. Nature 1984, 311:29–33.

    Article  PubMed  CAS  Google Scholar 

  2. Rodrigues GA, Park M: Dimerization mediated through a leucine zipper activates the oncogenic potential of the met receptor tyrosine kinase. Mol Cell Biol 1993, 13:6711–6722.

    PubMed  CAS  Google Scholar 

  3. Zhen Z, Giordano S, Longati P, et al.: Structural and functional domains critical for constitutive activation of the HGF-receptor (Met). Oncogene 1994, 9:1691–1697.

    PubMed  CAS  Google Scholar 

  4. Gohda E, Tsubouchi H, Nakayama H, et al.: Human hepatocyte growth factor in plasma from patients with fulminant hepatic failure. Exp Cell Res 1986, 166:139–150.

    Article  PubMed  CAS  Google Scholar 

  5. Nakamura T, Nawa K, Ichihara A, et al.: Purification and subunit structure of hepatocyte growth factor from rat platelets. FEBS Lett 1987, 224:311–316.

    Article  PubMed  CAS  Google Scholar 

  6. Stoker M, Gherardi E, Perryman M, et al.: Scatter factor is a fibroblast-derived modulator of epithelial cell mobility. Nature 1987, 327:239–242.

    Article  PubMed  CAS  Google Scholar 

  7. Comoglio PM, Boccaccio C: The HGF receptor family: unconventional signal transducers for invasive cell growth. Genes Cells 1996, 1:347–354.

    Article  PubMed  CAS  Google Scholar 

  8. Maestrini E, Tamagnone L, Longati P, et al.: A family of transmembrane proteins with homology to the MET-hepatocyte growth factor receptor. Proc Natl Acad Sci U S A 1996, 93:674–678.

    Article  PubMed  CAS  Google Scholar 

  9. Stella MC, Comoglio PM: HGF: a multifunctional growth factor controlling cell scattering. Int J Biochem Cell Biol 1999, 31:1357–1362.

    Article  PubMed  CAS  Google Scholar 

  10. Gherardi E, Sandin S, Petoukhov MV, et al.: Structural basis of hepatocyte growth factor/scatter factor and MET signalling. Proc Natl Acad Sci U S A 2006, 103:4046–4051.

    Article  PubMed  CAS  Google Scholar 

  11. Stamos J, Lazarus RA, Yao X, et al.: Crystal structure of the HGF beta-chain in complex with the Sema domain of the Met receptor. Embo J 2004, 23:2325–2335.

    Article  PubMed  CAS  Google Scholar 

  12. Hammond DE, Urbe S, Vande Woude GF, et al.: Down-regulation of MET, the receptor for hepatocyte growth factor. Oncogene 2001, 20:2761–2770.

    Article  PubMed  CAS  Google Scholar 

  13. Teis D, Huber IA: The odd couple: signal transduction and endocytosis. Cell Mol Life Sci 2003, 60:2020–2033.

    Article  PubMed  CAS  Google Scholar 

  14. Kamada M, Komori A, Chiba S, et al.: A prospective study of congenital cytomegalovirus infection in Japan. Scand J Infect Dis 1983, 15:227–232.

    PubMed  CAS  Google Scholar 

  15. Rodrigues GA, Park M: Autophosphorylation modulates the kinase activity and oncogenic potential of the Met receptor tyrosine kinase. Oncogene 1994, 9:2019–2027.

    PubMed  CAS  Google Scholar 

  16. Abella JV, Peschard P, Naujokas MA, et al.: Met/Hepatocyte growth factor receptor ubiquitination suppresses transformation and is required for Hrs phosphorylation. Mol Cell Biol 2005, 25:9632–9645.

    Article  PubMed  CAS  Google Scholar 

  17. Petrelli A, Gilestro GF, Lanzardo S, et al.: The endophilin-CIN85-Cbl complex mediates ligand-dependent downregulation of c-Met. Nature 2002, 416:187–190.

    Article  PubMed  CAS  Google Scholar 

  18. Soubeyran P, Kowanetz K, Szymkiewicz I, et al.: Cbl-CIN85-endophilin complex mediates ligand-induced downregulation of EGF receptors. Nature 2002, 416:183–187.

    Article  PubMed  CAS  Google Scholar 

  19. Bache KG, Raiborg C, Mehlum A, et al.: STAM and Hrs are subunits of a multivalent ubiquitin-binding complex on early endosomes. J Biol Chem 2003, 278:12513–12521.

    Article  PubMed  CAS  Google Scholar 

  20. Ponzetto C, Bardelli A, Zhen Z, et al.: A multifunctional docking site mediates signaling and transformation by the hepatocyte growth factor/scatter factor receptor family. Cell 1994, 77:261–271.

    Article  PubMed  CAS  Google Scholar 

  21. Furge KA, Zhang YW, Vande Woude GF: Met receptor tyrosine kinase: enhanced signaling through adapter proteins. Oncogene 2000, 19:5582–5589.

    Article  PubMed  CAS  Google Scholar 

  22. Fournier TM, Kamikura D, Teng K, et al.: Branching tubulogenesis but not scatter of madin-darby canine kidney cells requires a functional Grb2 binding site in the Met receptor tyrosine kinase. J Biol Chem 1996, 271:22211–22217.

    Article  PubMed  CAS  Google Scholar 

  23. Bardelli A, Longati P, Gramaglia D, et al.: Gab1 coupling to the HGF/Met receptor multifunctional docking site requires binding of Grb2 and correlates with the transforming potential. Oncogene 1997, 15:3103–3111.

    Article  PubMed  CAS  Google Scholar 

  24. Weidner KM, Sachs M, Riethmacher D, et al.: Mutation of juxtamembrane tyrosine residue 1001 suppresses loss-of-function mutations of the met receptor in epithelial cells. Proc Natl Acad Sci U S A 1995, 92:2597–2601.

    Article  PubMed  CAS  Google Scholar 

  25. Gandino L, Longati P, Medico E, et al.: Phosphorylation of serine 985 negatively regulates the hepatocyte growth factor receptor kinase. J Biol Chem 1994, 269:1815–1820.

    PubMed  CAS  Google Scholar 

  26. Bladt F, Riethmacher D, Isenmann S, et al.: Essential role for the c-met receptor in the migration of myogenic precursor cells into the limb bud. Nature 1995, 376:768–771.

    Article  PubMed  CAS  Google Scholar 

  27. Schmidt C, Bladt F, Goedecke S, et al.: Scatter factor/hepatocyte growth factor is essential for liver development. Nature 1995, 373:699–702.

    Article  PubMed  CAS  Google Scholar 

  28. Uehara Y, Minowa O, Mori C, et al.: Placental defect and embryonic lethality in mice lacking hepatocyte growth factor/scatter factor. Nature 1995, 373:702–705.

    Article  PubMed  CAS  Google Scholar 

  29. Maina F, Klein R: Hepatocyte growth factor, a versatile signal for developing neurons. Nat Neurosci 1999, 2:213–217.

    Article  PubMed  CAS  Google Scholar 

  30. Patane S, Avnet S, Coltella N, et al.: MET overexpression turns human primary osteoblasts into osteosarcomas. Cancer Res 2006, 66:4750–4757.

    Article  PubMed  CAS  Google Scholar 

  31. Ichimura E, Maeshima A, Nakajima T, et al.: Expression of c-met/HGF receptor in human non-small cell lung carcinomas in vitro and in vivo and its prognostic significance. Jpn J Cancer Res 1996, 87:1063–1069.

    PubMed  CAS  Google Scholar 

  32. Olivero M, Rizzo M, Madeddu R, et al.: Overexpression and activation of hepatocyte growth factor/scatter factor in human non-small-cell lung carcinomas. Br J Cancer 1996, 74:1862–1868.

    PubMed  CAS  Google Scholar 

  33. Siegfried JM, Weissfeld LA, Singh-Kaw P, et al.: Association of immunoreactive hepatocyte growth factor with poor survival in resectable non-small cell lung cancer. Cancer Res 1997, 57:433–439.

    PubMed  CAS  Google Scholar 

  34. Siegfried JM, Weissfeld LA, Luketich JD, et al.: The clinical significance of hepatocyte growth factor for non-small cell lung cancer. Ann Thorac Surg 1998, 66:1915–1918.

    Article  PubMed  CAS  Google Scholar 

  35. Tokunou M, Niki T, Eguchi K, et al.: c-MET expression in myofibroblasts: role in autocrine activation and prognostic significance in lung adenocarcinoma. Am J Pathol 2001, 158:1451–1463.

    PubMed  CAS  Google Scholar 

  36. Stabile LP, Lyker JS, Land SR, et al.: Transgenic mice overexpressing hepatocyte growth factor in the airways show increased susceptibility to lung cancer. Carcinogenesis 2006, 27:1547–1555.

    Article  PubMed  CAS  Google Scholar 

  37. Rossi G, Cavazza A, Marchioni A, et al.: Role of chemotherapy and the receptor tyrosine kinases KIT, PDGFRalpha, PDGFRbeta, and Met in large-cell neuroendocrine carcinoma of the lung. J Clin Oncol 2005, 23:8774–8785.

    Article  PubMed  CAS  Google Scholar 

  38. Yi S, Tsao MS: Activation of hepatocyte growth factor-met autocrine loop enhances tumorigenicity in a human lung adenocarcinoma cell line. Neoplasia 2000, 2:226–234.

    PubMed  CAS  Google Scholar 

  39. Jeffers M, Fiscella M, Webb CP, et al.: The mutationally activated Met receptor mediates motility and metastasis. Proc Natl Acad Sci U S A 1998, 95:14417–14422.

    Article  PubMed  CAS  Google Scholar 

  40. Maulik G, Kijima T, Ma PC, et al.: Modulation of the c-Met/hepatocyte growth factor pathway in small cell lung cancer. Clin Cancer Res 2002, 8:620–627.

    PubMed  CAS  Google Scholar 

  41. Derman MP, Chen JY, Spokes KC, et al.: An 11-amino acid sequence from c-met initiates epithelial chemotaxis via phosphatidylinositol 3-kinase and phospholipase C. J Biol Chem 1996, 271:4251–4255.

    Article  PubMed  CAS  Google Scholar 

  42. Wang R, Ferrell LD, Faouzi S, et al.: Activation of the Met receptor by cell attachment induces and sustains hepatocellular carcinomas in transgenic mice. J Cell Biol 2001, 153:1023–1034.

    Article  PubMed  CAS  Google Scholar 

  43. Yu Y, Merlino G: Constitutive c-Met signaling through a nonautocrine mechanism promotes metastasis in a transgenic transplantation model. Cancer Res 2002, 62:2951–2956.

    PubMed  CAS  Google Scholar 

  44. Tuck AB, Park M, Sterns EE, et al.: Coexpression of hepatocyte growth factor and receptor (Met) in human breast carcinoma. Am J Pathol 1996, 148:225–232.

    PubMed  CAS  Google Scholar 

  45. Koochekpour S, Jeffers M, Rulong S, et al.: Met and hepatocyte growth factor/scatter factor expression in human gliomas. Cancer Res 1997, 57:5391–5398.

    PubMed  CAS  Google Scholar 

  46. Li G, Schaider H, Satyamoorthy K, et al.: Downregulation of E-cadherin and Desmoglein 1 by autocrine hepatocyte growth factor during melanoma development. Oncogene 2001, 20:8125–8135.

    Article  PubMed  CAS  Google Scholar 

  47. Ferracini R, Di Renzo MF, Scotlandi K, et al.: The Met/HGF receptor is over-expressed in human osteosarcomas and is activated by either a paracrine or an autocrine circuit. Oncogene 1995, 10:739–749.

    PubMed  CAS  Google Scholar 

  48. Giordano S, Corso S, Conrotto P, et al.: The semaphorin 4D receptor controls invasive growth by coupling with Met. Nat Cell Biol 2002, 4:720–724.

    Article  PubMed  CAS  Google Scholar 

  49. Schmidt L, Duh FM, Chen F, et al.: Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat Genet 1997, 16:68–73.

    Article  PubMed  CAS  Google Scholar 

  50. Hellman A, Zlotorynski E, Scherer SW, et al.: A role for common fragile site induction in amplification of human oncogenes. Cancer Cell 2002, 1:89–97.

    Article  PubMed  CAS  Google Scholar 

  51. Sakakura C, Mori T, Sakabe T, et al.: Gains, losses, and amplifications of genomic materials in primary gastric cancers analyzed by comparative genomic hybridization. Genes Chromosomes Cancer 1999, 24:299–305.

    Article  PubMed  CAS  Google Scholar 

  52. Smolen GA, Sordella R, Muir B, et al.: Amplification of MET may identify a subset of cancers with extreme sensitivity to the selective tyrosine kinase inhibitor PHA-665752. Proc Natl Acad Sci U S A 2006, 103:2316–2321.

    Article  PubMed  CAS  Google Scholar 

  53. Yokota S, Kiyoi H, Nakao M, et al.: Internal tandem duplication of the FLT3 gene is preferentially seen in acute myeloid leukemia and myelodysplastic syndrome among various hematological malignancies. A study on a large series of patients and cell lines. Leukemia 1997, 11:1605–1609.

    Article  PubMed  CAS  Google Scholar 

  54. Lee JH, Han SU, Cho H, et al.: A novel germ line juxtamembrane Met mutation in human gastric cancer. Oncogene 2000, 19:4947–4953.

    Article  PubMed  CAS  Google Scholar 

  55. Peschard P, Fournier TM, Lamorte L, et al.: Mutation of the c-Cbl TKB domain binding site on the Met receptor tyrosine kinase converts it into a transforming protein. Mol Cell 2001, 8:995–1004.

    Article  PubMed  CAS  Google Scholar 

  56. Schmidt L, Junker K, Nakaigawa N, et al.: Novel mutations of the MET proto-oncogene in papillary renal carcinomas. Oncogene 1999, 18:2343–2350.

    Article  PubMed  CAS  Google Scholar 

  57. Ma PC, Kijima T, Maulik G, et al.: c-MET mutaional analysis in small cell lung cancer: Novel juxtamembrance domain mutations regulating cytoskeletal functions. Cancer Res 2003, 63:6272–6281.

    PubMed  CAS  Google Scholar 

  58. Zaffaroni D, Spinola M, Galvan A, et al.: Met proto-oncogene juxtamembrane rare variations in mouse and humans: differential effects of Arg and Cys alleles on mouse lung tumorigenesis. Oncogene 2005, 24:1084–1090.

    Article  PubMed  CAS  Google Scholar 

  59. Kong-Beltran M, Stamos J, Wickramasinghe D: The Sema domain of Met is necessary for receptor dimerization and activation. Cancer Cell 2004, 6:75–84.

    Article  PubMed  CAS  Google Scholar 

  60. Christensen JK, Schreck R, Burrows J, et al.: A selective small molecule inhibitor of c-Met kinase inhibits c-Met-dependent phenotypes in vitro and exhibits cytoreductive anti-tumor activity in vivo. Cancer Res 2003, 63:7345–7355.

    PubMed  CAS  Google Scholar 

  61. Cassinelli G, Lanzi C, Petrangolini G, et al.: Inhibition of c-Met and prevention of spontaneous metastatic spreading by the 2-indolinone RPI-1. Mol Cancer Ther 2006, 5:2388–2397.

    Article  PubMed  CAS  Google Scholar 

  62. Morotti A, Mila S, Accornero P, et al.: K252a inhibits the oncogenic properties of Met, the HGF receptor. Oncogene 2002, 21:4885–4893.

    Article  PubMed  CAS  Google Scholar 

  63. Sattler M, Pride YB, Ma P, et al.: A novel small molecule met inhibitor induces apoptosis in cells transformed by the oncogenic TPR-MET tyrosine kinase. Cancer Res 2003, 63:5462–5469.

    PubMed  CAS  Google Scholar 

  64. Walz C, Sattler M: Novel targeted therapies to overcome imatinib mesylate resistance in chronic myeloid leukemia (CML). Crit Rev Oncol Hematol 2006, 57:145–164.

    Article  PubMed  Google Scholar 

  65. Bardelli A, Longati P, Williams TA, et al.: A peptide representing the carboxyl-terminal tail of the met receptor inhibits kinase activity and invasive growth. J Biol Chem 1999, 274:29274–29281.

    Article  PubMed  CAS  Google Scholar 

  66. Parr C, Hiscox S, Nakamura T, et al.: Nk4, a new HGF/SF variant, is an antagonist to the influence of HGF/SF on the motility and invasion of colon cancer cells. Int J Cancer 2000, 85:563–570.

    Article  PubMed  CAS  Google Scholar 

  67. Tomioka D, Maehara N, Kuba K, et al.: Inhibition of growth, invasion, and metastasis of human pancreatic carcinoma cells by NK4 in an orthotopic mouse model. Cancer Res 2001, 61:7518–7524.

    PubMed  CAS  Google Scholar 

  68. Michieli P, Basilico C, Pennacchietti S, et al.: Mutant Met-mediated transformation is ligand-dependent and can be inhibited by HGF antagonists. Oncogene 1999, 18:5221–5231.

    Article  PubMed  CAS  Google Scholar 

  69. Martens T, Schmidt NO, Eckerich C, et al.: A novel one-armed anti-c-Met antibody inhibits glioblastoma growth in vivo. Clin Cancer Res 2006, 12:6144–6152.

    Article  PubMed  CAS  Google Scholar 

  70. Herynk MH, Stoeltzing O, Reinmuth N, et al.: Down-regulation of c-Met inhibits growth in the liver of human colorectal carcinoma cells. Cancer Res 2003, 63:2990–2996.

    PubMed  CAS  Google Scholar 

  71. Shinomiya N, Gao CF, Xie Q, et al.: RNA interference reveals that ligand-independent met activity is required for tumor cell signaling and survival. Cancer Res 2004, 64:7962–7970.

    Article  PubMed  CAS  Google Scholar 

  72. Kamal A, Thao L, Sensintaffar J, et al.: A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 2003, 425:407–410.

    Article  PubMed  CAS  Google Scholar 

  73. Webb CP, Hose CD, Koochekpour S, et al.: The gel-danamycins are potent inhibitors of the hepatocyte growth factor/scatter factor-met-urokinase plasminogen activator-plasmin proteolytic network. Cancer Res 2000, 60:342–349.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi Salgia MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sattler, M., Salgia, R. c-Met and hepatocyte growth factor: Potential as novel targets in cancer therapy. Curr Oncol Rep 9, 102–108 (2007). https://doi.org/10.1007/s11912-007-0005-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-007-0005-4

Keywords

Navigation