Skip to main content

Advertisement

Log in

Imaging Frontotemporal Lobar Degeneration

  • Neuroimaging (DJ Brooks, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

The term frontotemporal lobar degeneration (FTLD) refers to a group of neurodegenerative disorders that target the frontal and temporal lobes. It accounts for approximately 10 % of pathologically confirmed dementias but has been demonstrated to be as prevalent as Alzheimer’s disease in patients below the age of 65. The 3 major clinical syndromes associated with FTLD include behavioral variant frontotemporal dementia, semantic and nonfluent variants of primary progressive aphasia. The more recently introduced term logopenic variant appears to represent an atypical form of Alzheimer’s disease in the majority of cases. The neuropathology underlying these clinical syndromes is very heterogeneous and does not correlate well with the clinical phenotype. This causes great difficulties in early and reliable diagnosis and treatment of FTLD. However, significant advances have been made in recent years via the application of magnetic resonance imaging and positron emission tomography imaging methods as biomarkers. The current review aims to provide a synopsis on the value of magnetic resonance imaging-based and molecular imaging procedures in FTLD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Borroni B, Alberici A, Grassi M, et al. Is frontotemporal lobar degeneration a rare disorder? Evidence from a preliminary study in Brescia county. Italy J Alzheimers Dis. 2010;19:111–6.

    Google Scholar 

  2. Onyike CU, Diehl-Schmid J. The epidemiology of frontotemporal dementia. Int Rev Psychiatry. 2013;25:130–7.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Johnson JK, Diehl J, Mendez MF, et al. Frontotemporal lobar degeneration: demographic characteristics of 353 patients. Arch Neurol. 2005;62:925–30.

    PubMed  Google Scholar 

  4. Mackenzie IR, Foti D, Woulfe J, Hurwitz TA. Atypical frontotemporal lobar degeneration with ubiquitin-positive, TDP-43-negative neuronal inclusions. Brain. 2008;131:1282–93.

    Article  PubMed  Google Scholar 

  5. Diehl-Schmid J, Pohl C, Ruprecht C, Wagenpfeil S, Foerstl H, Kurz A. The Ekman 60 faces test as a diagnostic instrument in frontotemporal dementia. Arch Clin Neuropsychol. 2007;22:459–64.

    Article  PubMed  Google Scholar 

  6. Hodges JR, Davies R, Xuereb J, Kril J, Halliday G. Survival in frontotemporal dementia. Neurology. 2003;61:349–54.

    Article  PubMed  CAS  Google Scholar 

  7. Goldman JS, Farmer JM, Wood EM, et al. Comparison of family histories in FTLD subtypes and related tauopathies. Neurology. 2005;65:1817–9.

    Article  PubMed  CAS  Google Scholar 

  8. Sieben A, Van Langenhove T, Engelborghs S, et al. The genetics and neuropathology of frontotemporal lobar degeneration. Acta Neuropathol. 2012;124:353–72. Important paper on the various genotypes and neuropathologies involved in FTLD.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Renton AE, Majounie E, Waite A, et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron. 2011;72:257–68.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Rademakers R, Neumann M, Mackenzie IR. Advances in understanding the molecular basis of frontotemporal dementia. Nat Rev Neurol. 2012;8:423–34. Recent advances corresponding to the molecular and genetic aspects of FTLD are highlighted and their potential relevance with regard to targeted diagnostic tests and therapies is discussed.

    PubMed  CAS  PubMed Central  Google Scholar 

  11. Rascovsky K, Hodges JR, Knopman D, et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain. 2011;134:2456–77. Important paper on the clinical value of the novel diagnostic criteria for bvFTD.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gorno-Tempini ML, Hillis AE, Weintraub S, et al. Classification of primary progressive aphasia and its variants. Neurology. 2011;76:1006–14. Important paper on the classification of the different variants of PPA (complementary to reference Nr. 11).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Snowden JS, Bathgate D, Varma A, Blackshaw A, Gibbons ZC, Neary D. Distinct behavioural profiles in frontotemporal dementia and semantic dementia. J Neurol Neurosurg Psychiatry. 2001;70:323–32.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Bozeat S, Lambon Ralph MA, Patterson K, Garrard P, Hodges JR. Non-verbal semantic impairment in semantic dementia. Neuropsychologia. 2000;38:1207–15.

    Article  PubMed  CAS  Google Scholar 

  15. Marczinski CA, Davidson W, Kertesz A. A longitudinal study of behavior in frontotemporal dementia and primary progressive aphasia. Cogn Behav Neurol. 2004;17:185–90.

    PubMed  Google Scholar 

  16. Rabinovici GD, Rascovsky K, Miller BL. Frontotemporal lobar degeneration: clinical and pathologic overview. Handb Clin Neurol. 2008;89:343–64.

    Article  PubMed  Google Scholar 

  17. Mesulam MM, Weintraub S, Rogalski EJ, Wieneke C, Geula C, Bigio EH. Asymmetry and heterogeneity of Alzheimer's and frontotemporal pathology in primary progressive aphasia. Brain. 2014;137:1176–92. Important paper on the heterogeneity of underlying pathologies in FTLD and the difficulty of the clinical diagnosis of the different subtypes (with regard to the pathology involved).

    Article  PubMed  Google Scholar 

  18. Bonner MF, Ash S, Grossman M. The new classification of primary progressive aphasia into semantic, logopenic, or nonfluent/agrammatic variants. Curr Neurol Neurosci Rep. 2010;10:484–90.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mesulam M, Wieneke C, Rogalski E, Cobia D, Thompson C, Weintraub S. Quantitative template for subtyping primary progressive aphasia. Arch Neurol. 2009;66:1545–51.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Foster NL, Heidebrink JL, Clark CM, et al. FDG-PET improves accuracy in distinguishing frontotemporal dementia and Alzheimer's disease. Brain. 2007;130:2616–35.

    Article  PubMed  Google Scholar 

  21. Whitwell JL, Przybelski SA, Weigand SD, et al. Distinct anatomical subtypes of the behavioural variant of frontotemporal dementia: a cluster analysis study. Brain. 2009;132:2932–46.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Schroeter ML, Laird AR, Chwiesko C, et al. Conceptualizing neuropsychiatric diseases with multimodal data-driven meta-analyses - The case of behavioral variant frontotemporal dementia. Cortex. 2014;57C:22–37. Important Meta-Analysis indicating the core areas of neurodegeneration involved in bvFTD.

    Article  Google Scholar 

  23. Schroeter ML, Raczka K, Neumann J, von Cramon DY. Neural networks in frontotemporal dementia–a meta-analysis. Neurobiol Aging. 2008;29:418–26.

    Article  PubMed  Google Scholar 

  24. Pan PL, Song W, Yang J, et al. Gray matter atrophy in behavioral variant frontotemporal dementia: a meta-analysis of voxel-based morphometry studies. Dement Geriatr Cogn Disord. 2012;33:141–8.

    Article  PubMed  CAS  Google Scholar 

  25. Schroeter ML, Raczka K, Neumann J, Yves von Cramon D. Towards a nosology for frontotemporal lobar degenerations-a meta-analysis involving 267 subjects. Neuroimage. 2007;36:497–510.

    Article  PubMed  Google Scholar 

  26. Rohrer JD, Clarkson MJ, Kittus R, et al. Rates of hemispheric and lobar atrophy in the language variants of frontotemporal lobar degeneration. J Alzheimers Dis. 2012;30:407–11.

    PubMed  Google Scholar 

  27. Lu PH, Mendez MF, Lee GJ, et al. Patterns of brain atrophy in clinical variants of frontotemporal lobar degeneration. Dement Geriatr Cogn Disord. 2013;35:34–50.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Rohrer JD, Ridgway GR, Modat M, et al. Distinct profiles of brain atrophy in frontotemporal lobar degeneration caused by progranulin and tau mutations. Neuroimage. 2010;53:1070–6.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Whitwell JL, Weigand SD, Boeve BF, et al. Neuroimaging signatures of frontotemporal dementia genetics: C9ORF72, tau, progranulin and sporadics. Brain. 2012;135:794–806. Important paper on imaging findings in different genotypes involved in FTLD.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Rohrer JD, Rosen HJ. Neuroimaging in frontotemporal dementia. Int Rev Psychiatry. 2013;25:221–9.

    Article  PubMed  Google Scholar 

  31. Agosta F, Scola E, Canu E, et al. White matter damage in frontotemporal lobar degeneration spectrum. Cereb Cortex. 2012;22:2705–14.

    Article  PubMed  CAS  Google Scholar 

  32. Zhang Y, Tartaglia MC, Schuff N, et al. MRI signatures of brain macrostructural atrophy and microstructural degradation in frontotemporal lobar degeneration subtypes. J Alzheimers Dis. 2013;33:431–44.

    PubMed  PubMed Central  Google Scholar 

  33. Grossman M, Powers J, Ash S, et al. Disruption of large-scale neural networks in non-fluent/agrammatic variant primary progressive aphasia associated with frontotemporal degeneration pathology. Brain Lang. 2013;127:106–20.

    Article  PubMed  Google Scholar 

  34. Coulthard E, Firbank M, English P, et al. Proton magnetic resonance spectroscopy in frontotemporal dementia. J Neurol. 2006;253:861–8.

    Article  PubMed  CAS  Google Scholar 

  35. Chawla S, Wang S, Moore P, et al. Quantitative proton magnetic resonance spectroscopy detects abnormalities in dorsolateral prefrontal cortex and motor cortex of patients with frontotemporal lobar degeneration. J Neurol. 2010;257:114–21.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kantarci K, Petersen RC, Boeve BF, et al. 1H MR spectroscopy in common dementias. Neurology. 2004;63:1393–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Kizu O, Yamada K, Ito H, Nishimura T. Posterior cingulate metabolic changes in frontotemporal lobar degeneration detected by magnetic resonance spectroscopy. Neuroradiology. 2004;46:277–81.

    Article  PubMed  CAS  Google Scholar 

  38. Raichle ME. Behind the scenes of functional brain imaging: a historical and physiological perspective. Proc Natl Acad Sci U S A. 1998;95:765–72.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Hu WT, Wang Z, Lee VM-Y, Trojanowski JQ, Detre JA, Grossman M. Distinct cerebral perfusion patterns in FTLD and AD. Neurology. 2010;75:881–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Logothetis NK, Pfeuffer J. On the nature of the BOLD fMRI contrast mechanism. Magn Reson Imaging. 2004;22:1517–31.

    Article  PubMed  Google Scholar 

  41. Rombouts SA, van Swieten JC, Pijnenburg YA, Goekoop R, Barkhof F, Scheltens P. Loss of frontal fMRI activation in early frontotemporal dementia compared to early AD. Neurology. 2003;60:1904–8.

    Article  PubMed  CAS  Google Scholar 

  42. Wilson SM, Dronkers NF, Ogar JM, et al. Neural correlates of syntactic processing in the nonfluent variant of primary progressive aphasia. J Neurosci: Off J Soc Neurosci. 2010;30:16845–54.

    Article  CAS  Google Scholar 

  43. Wilson SM, Brambati SM, Henry RG, et al. The neural basis of surface dyslexia in semantic dementia. Brain. 2009;132:71–86.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med. 1995;34:537–41.

    Article  PubMed  CAS  Google Scholar 

  45. Seeley WW, Crawford RK, Zhou J, Miller BL, Greicius MD. Neurodegenerative diseases target large-scale human brain networks. Neuron. 2009;62:42–52. Groundbreaking paper, illustrating the involvement of different functional connectivity networks in different forms of neurodegenerative disorders.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Bonnelle V, Ham TE, Leech R, et al. Salience network integrity predicts default mode network function after traumatic brain injury. Proc Natl Acad Sci U S A. 2012;109:4690–5.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Zhou J, Greicius MD, Gennatas ED, et al. Divergent network connectivity changes in behavioural variant frontotemporal dementia and Alzheimer's disease. Brain. 2010;133:1352–67. Pioneering paper demonstrating opposing changes in the default mode network and the salience network in FTLD.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Farb NA, Grady CL, Strother S, et al. Abnormal network connectivity in frontotemporal dementia: evidence for prefrontal isolation. Cortex. 2013;49:1856–73.

    Article  PubMed  Google Scholar 

  49. Filippi M, Agosta F, Scola E, et al. Functional network connectivity in the behavioral variant of frontotemporal dementia. Cortex. 2013;49:2389–401.

    Article  PubMed  Google Scholar 

  50. Whitwell JL, Josephs KA, Avula R, et al. Altered functional connectivity in asymptomatic MAPT subjects: a comparison to bvFTD. Neurology. 2011;77:866–74.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Day GS, Farb NA, Tang-Wai DF, et al. Salience network resting-state activity: prediction of frontotemporal dementia progression. JAMA Neurol. 2013;70:1249–53.

    PubMed  Google Scholar 

  52. Greicius MD, Srivastava G, Reiss AL, Menon V. Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci U S A. 2004;101:4637–42.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  53. Sorg C, Riedl V, Muhlau M, et al. Selective changes of resting-state networks in individuals at risk for Alzheimer's disease. Proc Natl Acad Sci U S A. 2007;104:18760–5.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  54. Drzezga A, Becker JA, Van Dijk KR, et al. Neuronal dysfunction and disconnection of cortical hubs in non-demented subjects with elevated amyloid burden. Brain. 2011;134:1635–46.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Dopper EG, Rombouts SA, Jiskoot LC, et al. Structural and functional brain connectivity in presymptomatic familial frontotemporal dementia. Neurology. 2013;80:814–23.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  56. Borroni B, Alberici A, Cercignani M, et al. Granulin mutation drives brain damage and reorganization from preclinical to symptomatic FTLD. Neurobiol Aging. 2012;33:2506–20.

    Article  PubMed  CAS  Google Scholar 

  57. Agosta F, Sala S, Valsasina P, et al. Brain network connectivity assessed using graph theory in frontotemporal dementia. Neurology. 2013;81:134–43.

    Article  PubMed  Google Scholar 

  58. Agosta F, Galantucci S, Valsasina P, et al. Disrupted brain connectome in semantic variant of primary progressive aphasia. Neurobiol Aging. In press. Important work on the abnormalities regarding network connectivity in svPPA.

  59. Guo CC, Gorno-Tempini ML, Gesierich B, et al. Anterior temporal lobe degeneration produces widespread network-driven dysfunction. Brain. 2013;136:2979–91.

    Article  PubMed  Google Scholar 

  60. Magistretti PJ, Pellerin L. Cellular mechanisms of brain energy metabolism. Relevance to functional brain imaging and to neurodegenerative disorders. Ann N Y Acad Sci. 1996;777:380–7.

    Article  PubMed  CAS  Google Scholar 

  61. Diehl J, Grimmer T, Drzezga A, Riemenschneider M, Forstl H, Kurz A. Cerebral metabolic patterns at early stages of frontotemporal dementia and semantic dementia. PET Stud Neurobiol Aging. 2004;25:1051–6.

    Article  CAS  Google Scholar 

  62. Diehl-Schmid J, Grimmer T, Drzezga A, et al. Longitudinal changes of cerebral glucose metabolism in semantic dementia. Dement Geriatr Cogn Disord. 2006;22:346–51.

    Article  PubMed  CAS  Google Scholar 

  63. Diehl-Schmid J, Grimmer T, Drzezga A, et al. Decline of cerebral glucose metabolism in frontotemporal dementia: a longitudinal 18 F-FDG-PET-study. Neurobiol Aging 2007;28:42-50.

  64. Drzezga A, Grimmer T, Henriksen G, et al. Imaging of amyloid plaques and cerebral glucose metabolism in semantic dementia and Alzheimer's disease. Neuroimage. 2008;39:619–33.

    Article  PubMed  Google Scholar 

  65. Nestor PJ, Graham NL, Fryer TD, Williams GB, Patterson K, Hodges JR. Progressive non-fluent aphasia is associated with hypometabolism centred on the left anterior insula. Brain. 2003;126:2406–18.

    Article  PubMed  Google Scholar 

  66. Edwards-Lee T, Miller BL, Benson DF, et al. The temporal variant of frontotemporal dementia. Brain. 1997;120(Pt 6):1027–40.

    Article  PubMed  Google Scholar 

  67. Jagust WJ, Reed BR, Seab JP, Kramer JH, Budinger TF. Clinical-physiologic correlates of Alzheimer's disease and frontal lobe dementia. Am J Physiol Imaging. 1989;4:89–96.

    PubMed  CAS  Google Scholar 

  68. Rabinovici GD, Jagust WJ, Furst AJ, et al. Abeta amyloid and glucose metabolism in three variants of primary progressive aphasia. Ann Neurol. 2008;64:388–401. Very important paper demonstrating the frequent finding of Alzheimer-type amyloid-pathology in lvPPA.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Drzezga A, Grimmer T, Siebner H, Minoshima S, Schwaiger M, Kurz A. Prominent hypometabolism of the right temporoparietal and frontal cortex in two left-handed patients with primary progressive aphasia. J Neurol. 2002;249:1263–7.

    Article  PubMed  Google Scholar 

  70. Josephs KA, Duffy JR, Strand EA, et al. Progranulin-associated PiB-negative logopenic primary progressive aphasia. J Neurol. 2014;261:604–14.

    Article  PubMed  CAS  Google Scholar 

  71. Gorno-Tempini ML, Dronkers NF, Rankin KP, et al. Cognition and anatomy in three variants of primary progressive aphasia. Ann Neurol. 2004;55:335–46.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Madhavan A, Whitwell JL, Weigand SD, et al. FDG PET and MRI in logopenic primary progressive aphasia versus dementia of the Alzheimer's type. PLoS ONE. 2013;8:e62471.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  73. Teichmann M, Kas A, Boutet C, et al. Deciphering logopenic primary progressive aphasia: a clinical, imaging and biomarker investigation. Brain. 2013;136:3474–88.

    Article  PubMed  Google Scholar 

  74. Matias-Guiu JA, Cabrera-Martin MN, Garcia-Ramos R, et al. Evaluation of the new consensus criteria for the diagnosis of primary progressive aphasia using fluorodeoxyglucose positron emission tomography. Dement Geriatr Cogn Disord. 2014;38:147–52. This work nicely illustrates the value of imaging metabolic abnormalities using FDG-PET for identiying subtypes of PPA.

    Article  PubMed  Google Scholar 

  75. Villemagne VL, Klunk WE, Mathis CA, et al. Abeta Imaging: feasible, pertinent, and vital to progress in Alzheimer's disease. Eur J Nucl Med Mol Imaging. 2012;39:209–19.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Klunk WE, Engler H, Nordberg A, et al. Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound-B. Ann Neurol. 2004;55:306–19.

    Article  PubMed  CAS  Google Scholar 

  77. Price JC, Klunk WE, Lopresti BJ, et al. Kinetic modeling of amyloid binding in humans using PET imaging and Pittsburgh Compound-B. J Cereb Blood Flow Metab. 2005;25:1528–47.

    Article  PubMed  CAS  Google Scholar 

  78. Landau SM, Thomas BA, Thurfjell L, et al. Amyloid PET imaging in Alzheimer's disease: a comparison of three radiotracers. Eur J Nucl Med Mol Imaging 2014;41:1398-407.

  79. Lockhart A, Lamb JR, Osredkar T, et al. PIB is a non-specific imaging marker of amyloid-beta (Abeta) peptide-related cerebral amyloidosis. Brain. 2007;130:2607–15.

    Article  PubMed  CAS  Google Scholar 

  80. Clark CM, Pontecorvo MJ, Beach TG, et al. Cerebral PET with florbetapir compared with neuropathology at autopsy for detection of neuritic amyloid-beta plaques: a prospective cohort study. Lancet Neurol. 2012;11:669–78.

    Article  PubMed  CAS  Google Scholar 

  81. Clark CM, Schneider JA, Bedell BJ, et al. Use of florbetapir-PET for imaging beta-amyloid pathology. JAMA: J Am Med Assoc. 2011;305:275–83.

    Article  CAS  Google Scholar 

  82. Ikonomovic MD, Klunk WE, Abrahamson EE, et al. Post-mortem correlates of in vivo PiB-PET amyloid imaging in a typical case of Alzheimer's disease. Brain. 2008;131:1630–45.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Kadir A, Marutle A, Gonzalez D, et al. Positron emission tomography imaging and clinical progression in relation to molecular pathology in the first Pittsburgh compound B positron emission tomography patient with Alzheimer's disease. Brain. 2011;134:301–17.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Ye L, Velasco A, Fraser G, et al. In vitro high affinity alpha-synuclein binding sites for the amyloid imaging agent PIB are not matched by binding to Lewy bodies in postmortem human brain. J Neurochem. 2008;105:1428–37.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  85. Bacskai BJ, Hickey GA, Skoch J, et al. Four-dimensional multiphoton imaging of brain entry, amyloid binding, and clearance of an amyloid-beta ligand in transgenic mice. Proc Natl Acad Sci U S A. 2003;100:12462–7.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  86. Rabinovici GD, Furst AJ, O'Neil JP, et al. 11C-PIB PET imaging in Alzheimer disease and frontotemporal lobar degeneration. Neurology. 2007;68:1205–12.

    Article  PubMed  CAS  Google Scholar 

  87. Rabinovici GD, Rosen HJ, Alkalay A, et al. Amyloid vs FDG-PET in the differential diagnosis of AD and FTLD. Neurology. 2011;77:2034–42. An important paper, directly comparing the diagnostic strengths of FDG-PET and amyloid-imaging in the differential diagnosis of AD and FTLD.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  88. Engler H, Santillo AF, Wang SX, et al. In vivo amyloid imaging with PET in frontotemporal dementia. Eur J Nucl Med Mol Imaging. 2008;35:100–6.

    Article  PubMed  Google Scholar 

  89. Villemagne VL, Ong K, Mulligan RS, et al. Amyloid imaging with (18)F-florbetaben in Alzheimer disease and other dementias. J Nucl Med. 2011;52:1210–7.

    Article  PubMed  Google Scholar 

  90. Serrano GE, Sabbagh MN, Sue LI, et al. Positive florbetapir PET amyloid imaging in a subject with frequent cortical neuritic plaques and frontotemporal lobar degeneration with TDP43-positive inclusions. J Alzheimers Dis. In press.

  91. Leyton CE, Villemagne VL, Savage S, et al. Subtypes of progressive aphasia: application of the international consensus criteria and validation using beta-amyloid imaging. Brain. 2011;134:3030–43.

    Article  PubMed  Google Scholar 

  92. Villemagne VL, Okamura N. In vivo tau imaging: obstacles and progress. Alzheim Dement: J Alzheim Assoc. 2014;10:S254–264.

    Article  Google Scholar 

  93. Okamura N, Furumoto S, Fodero-Tavoletti MT, et al. Non-invasive assessment of Alzheimer's disease neurofibrillary pathology using 18 F-THK5105 PET. Brain. 2014;137:1762–71.

    Article  PubMed  Google Scholar 

  94. Harada R, Okamura N, Furumoto S, et al. Comparison of the binding characteristics of [18 F]THK-523 and other amyloid imaging tracers to Alzheimer's disease pathology. Eur J Nucl Med Mol Imaging. 2013;40:125–32.

    Article  PubMed  CAS  Google Scholar 

  95. Fodero-Tavoletti MT, Furumoto S, Taylor L, et al. Assessing THK523 selectivity for tau deposits in Alzheimer's disease and non-Alzheimer's disease tauopathies. Alzheimers Res Ther. 2014;6:11.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Chien DT, Szardenings AK, Bahri S, et al. Early clinical PET imaging results with the novel PHF-tau radioligand [F18]-T808. J Alzheimers Dis. 2014;38:171–84.

    PubMed  Google Scholar 

  97. Chien DT, Bahri S, Szardenings AK, et al. Early clinical PET imaging results with the novel PHF-tau radioligand [F-18]-T807. J Alzheimers Dis. 2013;34:457–68.

    PubMed  CAS  Google Scholar 

  98. Okamura N, Furumoto S, Harada R, et al. Novel 18 F-labeled arylquinoline derivatives for noninvasive imaging of tau pathology in Alzheimer disease. J Nucl Med. 2013;54:1420–7.

    Article  PubMed  CAS  Google Scholar 

  99. Braak H, Braak E. Frequency of stages of Alzheimer-related lesions in different age categories. Neurobiol Aging. 1997;18:351–7.

    Article  PubMed  CAS  Google Scholar 

  100. Murray ME, Kouri N, Lin WL, Jack Jr CR, Dickson DW, Vemuri P. Clinicopathologic assessment and imaging of tauopathies in neurodegenerative dementias. Alzheimers Res Ther. 2014;6:1.

    Article  PubMed  Google Scholar 

  101. Avants BB, Cook PA, Ungar L, Gee JC, Grossman M. Dementia induces correlated reductions in white matter integrity and cortical thickness: a multivariate neuroimaging study with sparse canonical correlation analysis. Neuroimage. 2010;50:1004–16.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Drzezga A, Barthel H, Minoshima S, Sabri O. Potential clinical applications of PET/MR imaging in neurodegenerative diseases. J Nucl Med 2014.

  103. Agosta F, Canu E, Sarro L, Comi G, Filippi M. Neuroimaging findings in frontotemporal lobar degeneration spectrum of disorders. Cortex. 2012;48:389–413.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank Hannah Lockau, MD for careful revision of the manuscript and Sue Permagne, MD, PHD for helpful comments.

Compliance with Ethics Guidelines

Conflict of Interest

Janine Diehl-Schmid and Traugott Gruppe declare that they have no conflict of interest.

Oezguer A. Onur was supported by the Koeln Fortune Program / Faculty of Medicine, University of Cologne.

Jens Kuhn has occasionally received honoraria outside the submitted work from AstraZeneca, Lilly, Lundbeck Otsuka Pharma and Schwabe for lecturing at conferences and financial support to travel. He received financial support for IIT-studies from Medtronic Europe SARL (Meerbusch, Germany).

Alexander Drzezga reports consulting/speaker honoraria from GE Healthcare, AVID/Lilly, and Piramal, outside the submitted work.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Drzezga.

Additional information

All authors contributed equally.

This article is part of the Topical Collection on Neuroimaging

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diehl-Schmid, J., Onur, O.A., Kuhn, J. et al. Imaging Frontotemporal Lobar Degeneration. Curr Neurol Neurosci Rep 14, 489 (2014). https://doi.org/10.1007/s11910-014-0489-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-014-0489-x

Keywords

Navigation