Skip to main content

Advertisement

Log in

The Practical Role of Echocardiography in Selection, Implantation, and Management of Patients Requiring LVAD Therapy

  • Echocardiography (RM Lang, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Viable treatment options for advanced heart failure have not emerged as the number of people afflicted with this condition has grown. Although heart transplantation is the only curative strategy for patients with end-stage heart failure, the relative shortage of donors has led to a worldwide plateau of this option over the past 20 years. The result is an unacceptably high mortality rate among patients with advanced heart failure. Interest in developing alternative curative strategies based on chronic circulatory support, with the aim of prolonging and improving quality of life for these patients, has grown. Patients supported with left ventricular assist devices require structured longitudinal care from a team of providers. An integrated approach using basic echocardiography is critical to patient selection, implantation, and continued surveillance and success of patients with left ventricular assist devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Roger VL. Epidemiology of heart failure. Circ Res. 2013;113:646–59.

    Article  CAS  PubMed  Google Scholar 

  2. Mahmood SS, Wang TJ. The epidemiology of congestive heart failure: the Framingham Heart Study perspective. Glob Heart. 2013;8:77–82.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Stehlik J, Edwards LB, Kucheryavaya AY, et al. The Registry of the International Society for Heart and Lung Transplantation: twenty-seventh official adult heart transplant report—2010. J Heart Lung Transplant. 2010;29:1089–103.

    Article  PubMed  Google Scholar 

  4. Rose EA, Gelijns AC, Moskowitz AJ, et al. Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med. 2001;345:1435–43.

    Article  CAS  PubMed  Google Scholar 

  5. Miller LW, Pagani FD, Russell SD, et al. Use of a continuous-flow device in patients awaiting heart transplantation. N Engl J Med. 2007;357:885–96.

    Article  CAS  PubMed  Google Scholar 

  6. Lietz K, Long JW, Kfoury AG, et al. Outcomes of left ventricular assist device implantation as destination therapy in the post-REMATCH era: implications for patient selection. Circulation. 2007;116:497–505.

    Article  PubMed  Google Scholar 

  7. Kirklin JK, Naftel DC, Kormos RL, et al. Fifth INTERMACS annual report: risk factor analysis from more than 6000 mechanical circulatory support patients. J Heart Lung Transplant. 2013;32(2):141–56. It summarizes and analyzes the prognosis of more than 6,000 LVAD patients implanted during the first 6 years. It is the most realistic and complete update regarding morbidity and mortality of these patients available in literature.

  8. Lund LH, Matthews J, Aaronson K. Patient selection for left ventricular assist devices. Eur J Heart Fail. 2010;12:434–43.

    Article  PubMed  Google Scholar 

  9. Slaughter MS, Meyer AL, Birks EJ. Destination therapy with left ventricular assist devices: patient selection and outcomes. Curr Opin Cardiol. 2011;26:232–6.

    Article  PubMed  Google Scholar 

  10. Cowger J, Sundareswaran K, Rogers JG, et al. Predicting survival in patients receiving continuous flow left ventricular assist devices: the HeartMate II risk score. J Am Coll Cardiol. 2013;61:313–21.

    Article  CAS  PubMed  Google Scholar 

  11. Lietz K. Destination therapy: patient selection and current outcomes. J Card Surg. 2010;25:462–71.

    Article  PubMed  Google Scholar 

  12. Liden H, Karason K, Bergh CH, et al. The feasibility of left ventricular mechanical support as a bridge to cardiac recovery. Eur J Heart Fail. 2007;9:525–30.

    Article  PubMed  Google Scholar 

  13. Rodriguez LE, Suarez EE, Loebe M, et al. Ventricular assist devices (VAD) therapy: new technology, new hope? Methodist Debakey Cardiovasc J. 2013;9:32–7.

    PubMed Central  PubMed  Google Scholar 

  14. Felix SE, Martina JR, Kirkels JH, et al. Continuous-flow left ventricular assist device support in patients with advanced heart failure: points of interest for the daily management. Eur J Heart Fail. 2012;14:351–6.

    Article  CAS  PubMed  Google Scholar 

  15. McMurray JJ, Adamopoulos S, Anker SD, et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2012;33:1787–847.Erratum in. Eur Heart J. 2013;34:158.

    Article  Google Scholar 

  16. American College of Cardiology Foundation Appropriate Use Criteria Task Force; American Society of Echocardiography; American Heart Association; et al. ACCF/ASE/AHA/ASNC/HFSA/HRS/SCAI/SCCM/SCCT/SCMR 2011 Appropriate Use Criteria for Echocardiography. A report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, American Society of Echocardiography, American Heart Association, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, Society of Critical Care Medicine, Society of Cardiovascular Computed Tomography, and Society for Cardiovascular Magnetic Resonance Endorsed by the American College of Chest Physicians. J Am Coll Cardiol. 2011;57:1126–66.

    Google Scholar 

  17. Gellen B, Canoui-Poitrine F, Lesault PF, et al. Usefulness of tissue Doppler imaging for assessing left ventricular filling pressure in patients with stable severe systolic heart failure. Am J Cardiol. 2013;112:1619–24.

    Article  PubMed  Google Scholar 

  18. Mornoş C, Petrescu L, Ionac A, et al. The prognostic value of a new tissue Doppler parameter in patients with heart failure. Int J Cardiovasc Imaging. [Epub ahead of print: Sept 17, 2013].

  19. O'Connor CM, Whellan DJ, Wojdyla D, et al. Factors related to morbidity and mortality in patients with chronic heart failure with systolic dysfunction: the HF-ACTION predictive risk score model. Circ Heart Fail. 2012;5:63–71.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Barlera S, Tavazzi L, Franzosi MG, et al. Predictors of mortality in 6975 patients with chronic heart failure in the Gruppo Italiano per lo Studio della Streptochinasi nell'Infarto Miocardico-Heart Failure trial: proposal for a nomogram. Circ Heart Fail. 2013;6:31–9.

    Article  CAS  PubMed  Google Scholar 

  21. Senni M, Parrella P, De Maria R, et al. Predicting heart failure outcome from cardiac and comorbid conditions: the 3C-HF score. Int J Cardiol. 2013;163:206–11.

    Article  PubMed  Google Scholar 

  22. Thohan V. Prognostic implications of echocardiography in advanced heart failure. Curr Opin Cardiol. 2004;19:238–49.

    Article  PubMed  Google Scholar 

  23. Ciampi Q, Villari B. Role of echocardiography in diagnosis and risk stratification in heart failure with left ventricular systolic dysfunction. Cardiovasc Ultrasound. 2007;5:34.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Oh JK. Echocardiography in heart failure: beyond diagnosis. Eur J Echocardiogr. 2007;8:4–14.

    Article  CAS  PubMed  Google Scholar 

  25. Kirkpatrick JN, Vannan MA, Narula J, et al. Echocardiography in heart failure: applications, utility, and new horizons. J Am Coll Cardiol. 2007;50:381–96.

    Article  PubMed  Google Scholar 

  26. Carluccio E, Dini FL, Biagioli P, et al. The 'Echo Heart Failure Score': an echocardiographic risk prediction score of mortality in systolic heart failure. Eur J Heart Fail. 2013;15:868–76. In this study, a good prognostic stratification of heart failure is performed through simple but effective clinical and echocardiographic parameters, which are easy to apply in the every-day assessment of patients.

  27. Cintron G, Johnson G, Francis G, et al. Prognostic significance of serial changes in left ventricular ejection fraction in patients with congestive heart failure. The V-HeFT VA Cooperative Studies Group. Circulation. 1993;87(6 Suppl):VI17–23.

    CAS  PubMed  Google Scholar 

  28. Wong M, Germanson T, Taylor WR, et al. Felodipine improves left ventricular emptying in patients with chronic heart failure: V-HeFT III echocardiographic substudy of multicenter reproducibility and detecting functional change. J Card Fail. 2000;6:19–28.

    Article  CAS  PubMed  Google Scholar 

  29. Ghio S, Temporelli PL, Marsan NA, et al. Prognostic implications of left ventricular dilation in patients with nonischemic heart failure: interactions with restrictive filling pattern and mitral regurgitation. Congest Heart Fail. 2012;18:198–204.

    Article  PubMed  Google Scholar 

  30. Vanoverschelde JL, Raphael DA, Robert AR, et al. Left ventricular filling in dilated cardiomyopathy: relation to functional class and hemodynamics. J Am Coll Cardiol. 1990;15:1288–95.

    Article  CAS  PubMed  Google Scholar 

  31. Yamamoto T, Oki T, Yamada H, et al. Prognostic value of the atrial systolic mitral annular motion velocity in patients with left ventricular systolic dysfunction. J Am Soc Echocardiogr. 2003;16:333–9.

    Article  PubMed  Google Scholar 

  32. Pinamonti B, Zecchin M, Di Lenarda A, et al. Persistence of restrictive left ventricular filling pattern in dilated cardiomyopathy: an ominous prognostic sign. J Am Coll Cardiol. 1997;29:604–12.

    Article  CAS  PubMed  Google Scholar 

  33. Cameli M, Righini FM, Lisi M, et al. Comparison of right vs left ventricular strain analysis as a predictor of outcome in patients with systolic heart failure referred for heart transplantation. Am J Cardiol. 2013;112:1778–84.

    Article  PubMed  Google Scholar 

  34. Damy T, Kallvikbacka-Bennett A, Goode K, et al. Prevalence of, associations with, and prognostic value of tricuspid annular plane systolic excursion (TAPSE) among out-patients referred for the evaluation of heart failure. J Card Fail. 2012;18:216–25.

    Article  PubMed  Google Scholar 

  35. Frea S, Bovolo V, Bergerone S, et al. Echocardiographic evaluation of right ventricular stroke work index in advanced heart failure: a new index? J Card Fail. 2012;18:886–93.

    Article  PubMed  Google Scholar 

  36. Marzec LN, Ambardekar AV. Preoperative evaluation and perioperative management of right ventricular failure after left ventricular assist device implantation. Semin Cardiothorac Vasc Anesth. 2013;17:249–61.

    Article  PubMed  Google Scholar 

  37. Romano MA, Cowger J, Aaronson KD, et al. Diagnosis and management of right-sided heart failure in subjects supported with left ventricular assist devices. Curr Treat Options Cardiovasc Med. 2010;12:420–30.

    Article  PubMed  Google Scholar 

  38. Meineri M, Van Rensburg AE, Vegas A. Right ventricular failure after LVAD implantation: prevention and treatment. Best Pract Res Clin Anaesthesiol. 2012;26:217–29.

    Article  PubMed  Google Scholar 

  39. John R, Lee S, Eckman P, et al. Right ventricular failure—a continuing problem in patients with left ventricular assist device support. J Cardiovasc Transl Res. 2010;3:604–11.

    Article  PubMed  Google Scholar 

  40. Topilsky Y, Hasin T, Oh JK, et al. Echocardiographic variables after left ventricular assist device implantation associated with adverse outcome. Circ Cardiovasc Imaging. 2011;4:648–61.

    Article  PubMed  Google Scholar 

  41. Topilsky Y, Oh JK, Shah DK, et al. Echocardiographic predictors of adverse outcomes after continuous left ventricular assist device implantation. JACC Cardiovasc Imaging. 2011;4:211–22. In this study, authors identify some effective echocardiographic parameters to integrate with clinical and hemodynamic data to predict right ventricular failure, which is the major cause of post-LVAD implant morbidity and mortality.

  42. Rudski LG, Lai WW, Afilalo J, et al. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr. 2010;23:685–713; quiz 786–8. In this review, all the available echocardiographic parameters to study RV morphology and function are presented. This is crucial for LVAD patient selection and follow-up.

  43. St John Sutton M, Pfeffer MA, Moye L, et al. Cardiovascular death and left ventricular remodeling two years after myocardial infarction: baseline predictors and impact of long-term use of captopril: information from the Survival and Ventricular Enlargement (SAVE) trial. Circulation. 1997;96:3294–9.

    Article  CAS  PubMed  Google Scholar 

  44. Zornoff LA, Skali H, Pfeffer MA, et al. Right ventricular dysfunction and risk of heart failure and mortality after myocardial infarction. J Am Coll Cardiol. 2002;39:1450–5.

    Article  PubMed  Google Scholar 

  45. Chumnanvej S, Wood MJ, MacGillivray TE, et al. Perioperative echocardiographic examination for ventricular assist device implantation. Anesth Analg. 2007;105:583–601.

    Article  PubMed  Google Scholar 

  46. Raina A, Seetha Rammohan HR, Gertz ZM, et al. Postoperative right ventricular failure after left ventricular assist device placement is predicted by preoperative echocardiographic structural, hemodynamic, and functional parameters. J Card Fail. 2013;19:16–24.

    Article  PubMed  Google Scholar 

  47. Vivo RP, Cordero-Reyes AM, Qamar U, et al. Increased right-to-left ventricle diameter ratio is a strong predictor of right ventricular failure after left ventricular assist device. J Heart Lung Transplant. 2013;32:792–9.

    Article  PubMed  Google Scholar 

  48. Kukucka M, Stepanenko A, Potapov E, et al. Right-to-left ventricular end-diastolic diameter ratio and prediction of right ventricular failure with continuous-flow left ventricular assist devices. J Heart Lung Transplant. 2011;30:64–9.

    Article  PubMed  Google Scholar 

  49. Kaul S, Tei C, Hopkins JM, et al. Assessment of right ventricular function using 2-dimensional echocardiography. Am Heart J. 1984;107:526–31.

    Article  CAS  PubMed  Google Scholar 

  50. Ghio S, Recusani F, Klersy C, et al. Prognostic usefulness of the tricuspid annular plane systolic excursion in patients with congestive heart failure secondary to idiopathic or ischemic dilated cardiomyopathy. Am J Cardiol. 2000;85:837–42.

    Article  CAS  PubMed  Google Scholar 

  51. Puwanant S, Hamilton KK, Klodell CT, et al. Tricuspid annular motion as a predictor of severe right ventricular failure after left ventricular assist device implantation. J Heart Lung Transplant. 2008;27:1102–7.

    Article  PubMed  Google Scholar 

  52. Ammar KA, Umland MM, Kramer C, et al. The ABCs of left ventricular assist device echocardiography: a systematic approach. Eur Heart J Cardiovasc Imaging. 2012;13:885–99. Comprehensive review on the role of echocardiography in all the phases of LVAD implant, before, during, and after the procedure.

    Article  PubMed  Google Scholar 

  53. Meluzín J, Spinarová L, Dusek L, et al. Prognostic importance of the right ventricular function assessed by Doppler tissue imaging. Eur J Echocardiogr. 2003;4:262–71.

    Article  PubMed  Google Scholar 

  54. Meluzin J, Spinarová L, Hude P, et al. Prognostic importance of various echocardiographic right ventricular functional parameters in patients with symptomatic heart failure. J Am Soc Echocardiogr. 2005;18:435–44.

    Article  PubMed  Google Scholar 

  55. Meluzin J, Spinarová L, Hude P, et al. Combined right ventricular systolic and diastolic dysfunction represents a strong determinant of poor prognosis in patients with symptomatic heart failure. Int J Cardiol. 2005;105:164–73.

    Article  PubMed  Google Scholar 

  56. Grant AD, Smedira NG, Starling RC, et al. Independent and incremental role of quantitative right ventricular evaluation for the prediction of right ventricular failure after left ventricular assist device implantation. J Am Coll Cardiol. 2012;60:521–8. New technology, such as speckle tracking echocardiography, will have a pivotal role in patient selection, allowing a better prediction of postimplant RV performance than traditional echocardiographic parameters. This is the first large original study focused on RV free wall longitudinal strain as a predictor of prognosis in this subset of patients.

    Article  PubMed  Google Scholar 

  57. Cameli M, Lisi M, Righini FM, et al. Speckle tracking echocardiography as a new technique to evaluate right ventricular function in patients with left ventricular assist device therapy. J Heart Lung Transplant. 2013;32:424–30.

    Article  PubMed  Google Scholar 

  58. Abramson SV, Burke JF, Kelly Jr JJ, et al. Pulmonary hypertension predicts mortality and morbidity in patients with dilated cardiomyopathy. Ann Intern Med. 1992;116:888–95.

    Article  CAS  PubMed  Google Scholar 

  59. Imamura T, Kinugawa K, Hatano M, et al. Bosentan improved persistent pulmonary hypertension in a case after implantation of a left ventricular assist device. J Artif Organs. 2013;16:101–4.

    Article  PubMed  Google Scholar 

  60. Lam KM, Ennis S, O'Driscoll G, et al. Observations from noninvasive measures of right heart hemodynamics in left ventricular assist device patients. J Am Soc Echocardiogr. 2009;22:1055–62.

    Article  PubMed  Google Scholar 

  61. Atluri P, Fairman AS, Macarthur JW, et al. Continuous flow left ventricular assist device implant significantly improves pulmonary hypertension, right ventricular contractility, and tricuspid valve competence. J Card Surg. 2013;28:770–5.

    Article  PubMed  Google Scholar 

  62. Pauwaa S, Bhat G, Tatooles AJ, et al. How effective are continuous flow left ventricular assist devices in lowering high pulmonary artery pressures in heart transplant candidates? Cardiol J. 2012;19:153–8.

    Article  PubMed  Google Scholar 

  63. Lanzarini L, Fontana A, Lucca E, et al. Noninvasive estimation of both systolic and diastolic pulmonary artery pressure from Doppler analysis of tricuspid regurgitant velocity spectrum in patients with chronic heart failure. Am Heart J. 2002;144:1087–94.

    Article  PubMed  Google Scholar 

  64. Aronson D, Darawsha W, Atamna A, et al. Pulmonary hypertension, right ventricular function, and clinical outcome in acute decompensated heart failure. J Card Fail. 2013;19:665–71.

    Article  PubMed  Google Scholar 

  65. Merlos P, Núñez J, Sanchis J, Miñana G, et al. Echocardiographic estimation of pulmonary arterial systolic pressure in acute heart failure. Prognostic implications. Eur J Intern Med. 2013;24:562–7.

    Article  PubMed  Google Scholar 

  66. Piacentino III V, Williams ML, Depp T, et al. Impact of tricuspid valve regurgitation in patients treated with implantable left ventricular assist devices. Ann Thorac Surg. 2011;91:1342–6; discussion 1346–7.

    Google Scholar 

  67. Zoghbi WA, Enriquez-Sarano M, Foster E, et al. Recommendations for evaluation of the severity of native valvular regurgitation with two-dimensional and Doppler echocardiography. J Am Soc Echocardiogr. 2003;16:777–802.

    Article  PubMed  Google Scholar 

  68. Atluri P, Goldstone AB, Fairman AS, et al. Predicting right ventricular failure in the modern, continuous flow left ventricular assist device era. Ann Thorac Surg. 2013;96:857–63; discussion 863–4.

    Google Scholar 

  69. Baumgartner H, Hung J, Bermejo J, et al. Echocardiographic assessment of valve stenosis: EAE/ASE recommendations for clinical practice. J Am Soc Echocardiogr. 2009;22:1–23; quiz 101–2. Erratum in. J Am Soc Echocardiogr. 2009;22:442.

    Article  Google Scholar 

  70. Lancellotti P, Tribouilloy C, Hagendorff A, et al. European Association of Echocardiography recommendations for the assessment of valvular regurgitation. Part 1: aortic and pulmonary regurgitation (native valve disease). Eur J Echocardiogr. 2010;11:223–44.

    Article  PubMed  Google Scholar 

  71. Lancellotti P, Moura L, Pierard LA, et al. European Association of Echocardiography recommendations for the assessment of valvular regurgitation. Part 2: mitral and tricuspid regurgitation (native valve disease). Eur J Echocardiogr. 2010;11:307–32.

    Article  PubMed  Google Scholar 

  72. Bonow RO, Carabello BA, Chatterjee K, et al. 2008 focused update incorporated into the ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to revise the 1998 guidelines for the management of patients with valvular heart disease). Endorsed by the Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol. 2008;52:e1–142.

    Article  PubMed  Google Scholar 

  73. Joint Task Force on the Management of Valvular Heart Disease of the European Society of Cardiology (ESC); European Association for Cardio-Thoracic Surgery (EACTS), Vahanian A, et al. Guidelines on the management of valvular heart disease (version 2012). Eur Heart J. 2012;33:2451–96.

    Article  PubMed  Google Scholar 

  74. Pal JD, Klodell CT, John R, et al. Low operative mortality with implantation of a continuous-flow left ventricular assist device and impact of concurrent cardiac procedures. Circulation. 2009;120(11 Suppl):S215–9.

    Article  PubMed  Google Scholar 

  75. Park SJ, Liao KK, Segurola R, et al. Management of aortic insufficiency in patients with left ventricular assist devices: a simple coaptation stitch method (Park's stitch). J Thorac Cardiovasc Surg. 2004;127:264–6.

    Article  PubMed  Google Scholar 

  76. Dranishnikov N, Stepanenko A, Potapov EV, et al. Simultaneous aortic valve replacement in left ventricular assist device recipients: single-center experience. Int J Artif Organs. 2012;35:489–94.

    Article  PubMed  Google Scholar 

  77. Baum C, Seiffert M, Treede H, et al. Concomitant transcatheter aortic valve and left ventricular assist device implantation. ASAIO J. 2013;59:90–2.

    Article  PubMed  Google Scholar 

  78. Morgan JA, Tsiouris A, Nemeh HW, et al. Impact of concomitant cardiac procedures performed during implantation of long-term left ventricular assist devices. J Heart Lung Transplant. 2013;32:1255–61.

    Article  PubMed  Google Scholar 

  79. Parikh KS, Mehrotra AK, Russo MJ, et al. Percutaneous transcatheter aortic valve closure successfully treats left ventricular assist device-associated aortic insufficiency and improves cardiac hemodynamics. JACC Cardiovasc Interv. 2013;6:84–9.

    Article  PubMed  Google Scholar 

  80. Khan S, Koerner MM, Pae W, et al. Successful percutaneous transcatheter aortic valve replacement in multi-organ failure due to aortic bioprosthesis regurgitation in a patient with continuous-flow LVAD. J Heart Lung Transplant. 2013;32:659–63.

    Article  PubMed  Google Scholar 

  81. Marriott K, Manins V, Forshaw A, et al. Detection of right-to-left atrial communication using agitated saline contrast imaging: experience with 1162 patients and recommendations for echocardiography. J Am Soc Echocardiogr. 2013;26:96–102.

    Article  PubMed  Google Scholar 

  82. Shapiro GC, Leibowitz DW, Oz MC, et al. Diagnosis of patent foramen ovale with transesophageal echocardiography in a patient supported with a left ventricular assist device. J Heart Lung Transplant. 1995;14:594–7.

    CAS  PubMed  Google Scholar 

  83. Bartoli CR, McCants KC, Birks EJ, et al. Percutaneous closure of a patent foramen ovale to prevent paradoxical thromboembolism in a patient with a continuous-flow LVAD. J Invasive Cardiol. 2013;25:154–6.

    PubMed  Google Scholar 

  84. Loforte A, Violini R, Musumeci F. Transcatheter closure of patent foramen ovale for hypoxemia during left ventricular assist device support. J Card Surg. 2012;27:528–9.

    Article  PubMed  Google Scholar 

  85. Estep JD, Chang SM, Bhimaraj A, et al. Imaging for ventricular function and myocardial recovery on nonpulsatile ventricular assist devices. Circulation. 2012;125:2265–77.

    Article  PubMed  Google Scholar 

  86. Topilsky Y, Oh JK, Atchison FW, et al. Echocardiographic findings in stable outpatients with properly functioning HeartMate II left ventricular assist devices. J Am Soc Echocardiogr. 2011;24:157–69.

    Article  PubMed  Google Scholar 

  87. Drakos SG, Wever-Pinzon O, Selzman CH, et al. Magnitude and time course of changes induced by continuous-flow left ventricular assist device unloading in chronic heart failure: insights into cardiac recovery. J Am Coll Cardiol. 2013;61:1985–94. LVAD induces LV reverse remodeling that clinicians should be able to quantify both on a short- and long-term basis. This study analyzed all aspects of LV reverse remodeling from a structural to a molecular point of view.

    Article  PubMed  Google Scholar 

  88. Estep JD, Stainback RF, Little SH, et al. The role of echocardiography and other imaging modalities in patients with left ventricular assist devices. JACC Cardiovasc Imaging. 2010;3:1049–64. Comprehensive review on multimodality imaging approach to LVAD patients. Not only echocardiography, but also other imaging modalities may have a role in the selection and follow-up of these patients.

    Article  PubMed  Google Scholar 

  89. Dang NC, Topkara VK, Mercando M, et al. Right heart failure after left ventricular assist device implantation in patients with chronic congestive heart failure. J Heart Lung Transplant. 2006;25:1–6.

    Article  PubMed  Google Scholar 

  90. Moon MR, Bolger AF, DeAnda A, et al. Septal function during left ventricular unloading. Circulation. 1997;95:1320–7.

    Article  CAS  PubMed  Google Scholar 

  91. Potapov EV, Stepanenko A, Dandel M, et al. Tricuspid incompetence and geometry of the right ventricle as predictors of right ventricular function after implantation of a left ventricular assist device. J Heart Lung Transplant. 2008;27:1275–81.

    Article  PubMed  Google Scholar 

  92. Topilsky Y, Maltais S, Oh JK, et al. Focused review on transthoracic echocardiographic assessment of patients with continuous axial left ventricular assist devices. Cardiol Res Pract. 2011;2011:187434. Practical echocardiographic approach to an LVAD carrier patient. In this study, the authors highlight what the cardiologist should know and look for to perform a good LVAD assessment..

    PubMed Central  PubMed  Google Scholar 

  93. Paluszkiewicz L, Schulte-Eistrup S, Körtke H, et al. Thrombosis of the LVAD inflow cannula detected by transthoracic echocardiography: 2D and 3D thrombus visualization. Echocardiography. 2011;28:E194–5.

    Article  PubMed  Google Scholar 

  94. May-Newman KD, Hillen BK, Sironda CS, et al. Effect of LVAD outflow conduit insertion angle on flow through the native aorta. J Med Eng Technol. 2004;28:105–9.

    Article  CAS  PubMed  Google Scholar 

  95. Grayburn PA, Appleton CP, DeMaria AN, et al. Echocardiographic predictors of morbidity and mortality in patients with advanced heart failure: the Beta-blocker Evaluation of Survival Trial (BEST). J Am Coll Cardiol. 2005;45:1064–71.

    Article  PubMed  Google Scholar 

  96. Dokainish H, Zoghbi WA, Lakkis NM, et al. Incremental predictive power of B-type natriuretic peptide and tissue Doppler echocardiography in the prognosis of patients with congestive heart failure. J Am Coll Cardiol. 2005;45:1223–6.

    Article  CAS  PubMed  Google Scholar 

  97. Meta-analysis Research Group in Echocardiography (MeRGE) Heart Failure Collaborators, Doughty RN, Klein AL, et al. Independence of restrictive filling pattern and LV ejection fraction with mortality in heart failure: an individual patient meta-analysis. Eur J Heart Fail. 2008;10:786–92.

    Google Scholar 

  98. Somaratne JB, Whalley GA, Poppe KK, et al. Pseudonormal mitral filling is associated with similarly poor prognosis as restrictive filling in patients with heart failure and coronary heart disease: a systematic review and meta-analysis of prospective studies. J Am Soc Echocardiogr. 2009;22:494–8.

    Article  PubMed  Google Scholar 

  99. Rossi A, Temporelli PL, Quintana M, et al. Independent relationship of left atrial size and mortality in patients with heart failure: an individual patient meta-analysis of longitudinal data (MeRGE Heart Failure). Eur J Heart Fail. 2009;11:929–36.

    Article  PubMed  Google Scholar 

  100. Ghio S, Temporelli PL, Klersy C, et al. Prognostic relevance of a noninvasive evaluation of right ventricular function and pulmonary artery pressure in patients with chronic heart failure. Eur J Heart Fail. 2013;15:408–14.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Joe Grundle and Katie Klein of Aurora Cardiovascular Services for the editorial preparation of the manuscript and Brian J. Miller and Brian Schurrer of Aurora Sinai Medical Center for help with the figures.

Compliance with Ethics Guidelines

Conflict of Interest

Maria Chiara Todaro declares that she has no conflict of interest. Bijoy K. Khandheria declares that he has no conflict of interest. Timothy E. Paterick declares that he has no conflict of interest. Matt M. Umland declares that he has no conflict of interest. Vinay Thohan declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinay Thohan.

Additional information

This article is part of the Topical Collection on Echocardiography

Electronic supplementary material

Below is the link to the electronic supplementary material.

Movie 1

Color Doppler parasternal long-axis view at 9,400 rpm of a left ventricular assist device-supported patient demonstrating features of pump speeds that are too high: left ventricle (LV) completely decompressed, interventricular septum shifted toward the LV, aortic valve not opening, flow acceleration mid-LV cavity, and no or trace mitral regurgitation. (ASF 1141 kb)

Movie 2

Color Doppler apical 4-chamber view at 9,400 rpm of a left ventricular assist device-supported patient demonstrating features of pump speeds that are too high: left ventricle (LV) completely decompressed, interventricular septum shifted toward the LV, aortic valve not opening, flow acceleration mid-LV cavity, and no or trace mitral regurgitation. (ASF 919 kb)

Movie 3

Color Doppler parasternal long-axis view at 9,200 rpm of a left ventricular assist device-supported patient demonstrating features of pump speeds that are adequately supported: left ventricle (LV) decompressed, interventricular septum shifts intermittently toward the LV, aortic valve periodically opening, no flow acceleration mid-LV cavity, and mild mitral regurgitation. (ASF 612 kb)

Movie 4

Color Doppler apical 4-chamber view at 9,200 rpm of a left ventricular assist device-supported patient demonstrating features of pump speeds that are adequately supported: left ventricle (LV) decompressed, interventricular septum shifts intermittently toward the LV, aortic valve periodically opening, no flow acceleration mid-LV cavity, and mild mitral regurgitation. (ASF 575 kb)

Movie 5

Color Doppler parasternal long-axis view at 8,600 rpm of a left ventricular assist device-supported patient demonstrating features of pump speeds that are too low: left ventricle (LV) not decompressed, interventricular septum shifts toward the right ventricle, aortic valve periodically opening, no flow acceleration mid-LV cavity, and worsening mitral regurgitation. (ASF 956 kb)

Movie 6

Color Doppler apical 4-chamber view at 8,600 rpm of a left ventricular assist device-supported patient demonstrating features of pump speeds that are too low: left ventricle (LV) not decompressed, interventricular septum shifts toward the right ventricle, aortic valve periodically opening, no flow acceleration mid-LV cavity, and worsening mitral regurgitation. (ASF 847 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Todaro, M.C., Khandheria, B.K., Paterick, T.E. et al. The Practical Role of Echocardiography in Selection, Implantation, and Management of Patients Requiring LVAD Therapy. Curr Cardiol Rep 16, 468 (2014). https://doi.org/10.1007/s11886-014-0468-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-014-0468-5

Keywords

Navigation