Skip to main content
Log in

Zinc homeostasis in the metabolic syndrome and diabetes

  • Review
  • Published:
Frontiers of Medicine Aims and scope Submit manuscript

Abstract

Zinc (Zn) is an essential mineral that is required for various cellular functions. Zn dyshomeostasis always is related to certain disorders such as metabolic syndrome, diabetes and diabetic complications. The associations of Zn with metabolic syndrome, diabetes and diabetic complications, thus, stem from the multiple roles of Zn: (1) a constructive component of many important enzymes or proteins, (2) a requirement for insulin storage and secretion, (3) a direct or indirect antioxidant action, and (4) an insulin-like action. However, whether there is a clear cause-and-effect relationship of Zn with metabolic syndrome, diabetes, or diabetic complications remains unclear. In fact, it is known that Zn deficiency is a common phenomenon in diabetic patients. Chronic low intake of Zn was associated with the increased risk of diabetes and diabetes also impairs Zn metabolism. Theoretically Zn supplementation should prevent the metabolic syndrome, diabetes, and diabetic complications; however, limited available data are not always supportive of the above notion. Therefore, this review has tried to summarize these pieces of available information, possible mechanisms by which Zn prevents the metabolic syndrome, diabetes, and diabetic complications. In the final part, what are the current issues for Zn supplementation were also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Cai L, Li XK, Song Y, Cherian MG. Essentiality, toxicology and chelation therapy of zinc and copper. Curr Med Chem 2005; 12(23): 2753–2763

    Article  PubMed  CAS  Google Scholar 

  2. Prasad AS. Zinc: an overview. Nutrition 1995; 11(1 Suppl): 93–99

    PubMed  CAS  Google Scholar 

  3. Reaven GM. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 1988; 37(12): 1595–1607

    Article  PubMed  CAS  Google Scholar 

  4. Sumner AD, Sardi GL, Reed JF 3rd. Components of the metabolic syndrome differ between young and old adults in the US population. J Clin Hypertens (Greenwich) 2012; 14(8): 502–506

    Article  Google Scholar 

  5. Bardsley JK, Want LL. Overview of diabetes. Crit Care Nurs Q 2004; 27(2): 106–112

    PubMed  Google Scholar 

  6. Jayawardena R, Ranasinghe P, Galappatthy P, Malkanthi R, Constantine G, Katulanda P. Effects of zinc supplementation on diabetes mellitus: a systematic review and meta-analysis. Diabetol Metab Syndr 2012; 4(1): 13

    Article  PubMed  CAS  Google Scholar 

  7. Gupta R, Garg VK, Mathur DK, Goyal RK. Oral zinc therapy in diabetic neuropathy. J Assoc Physicians India 1998; 46(11): 939–942

    PubMed  CAS  Google Scholar 

  8. Tapiero H, Tew KD. Trace elements in human physiology and pathology: zinc and metallothioneins. Biomed Pharmacother 2003; 57(9): 399–411

    Article  PubMed  CAS  Google Scholar 

  9. Kambe T, Yamaguchi-Iwai Y, Sasaki R, Nagao M. Overview of mammalian zinc transporters. Cell Mol Life Sci 2004; 61(1): 49–68

    Article  PubMed  CAS  Google Scholar 

  10. Cai L, Satoh M, Tohyama C, Cherian MG. Metallothionein in radiation exposure: its induction and protective role. Toxicology 1999; 132(2–3): 85–98

    Article  PubMed  CAS  Google Scholar 

  11. Cai L, Klein JB, Kang YJ. Metallothionein inhibits peroxynitriteinduced DNA and lipoprotein damage. J Biol Chem 2000; 275(50): 38957–38960

    Article  PubMed  CAS  Google Scholar 

  12. Cai L. Metallothionein and cardiomyopathy. In: Zatta P. Metallothioneins in Biochemistry and Pathology. New Jersey: World Scientific, 2008:227–269

    Chapter  Google Scholar 

  13. Prasad AS. Clinical, immunological, anti-inflammatory and antioxidant roles of zinc. Exp Gerontol 2008; 43(5): 370–377

    Article  PubMed  CAS  Google Scholar 

  14. Prasad AS. Discovery of human zinc deficiency: 50 years later. J Trace Elem Med Biol 2012; 26(2–3): 66–69

    Article  PubMed  CAS  Google Scholar 

  15. Goldman J, Carpenter FH. Zinc binding, circular dichroism, and equilibrium sedimentation studies on insulin (bovine) and several of its derivatives. Biochemistry 1974; 13(22): 4566–4574

    Article  PubMed  CAS  Google Scholar 

  16. Bakaysa DL, Radziuk J, Havel HA, Brader ML, Li S, Dodd SW, Beals JM, Pekar AH, Brems DN. Physicochemical basis for the rapid time-action of LysB28ProB29-insulin: dissociation of a protein-ligand complex. Protein Sci 1996; 5(12): 2521–2531

    Article  PubMed  CAS  Google Scholar 

  17. Wang X, Zhou B. Dietary zinc absorption: A play of Zips and ZnTs in the gut. IUBMB Life 2010; 62(3): 176–182

    Article  PubMed  CAS  Google Scholar 

  18. Fukada T, Kambe T. Molecular and genetic features of zinc transporters in physiology and pathogenesis. Metallomics 2011; 3(7): 662–674

    Article  PubMed  CAS  Google Scholar 

  19. Kambe T. An overview of a wide range of functions of ZnT and Zip zinc transporters in the secretory pathway. Biosci Biotechnol Biochem 2011; 75(6): 1036–1043

    Article  PubMed  CAS  Google Scholar 

  20. Fukada T, Yamasaki S, Nishida K, Murakami M, Hirano T. Zinc homeostasis and signaling in health and diseases: Zinc signaling. J Biol Inorg Chem 2011; 16(7): 1123–1134

    Article  PubMed  CAS  Google Scholar 

  21. Chimienti F, Devergnas S, Favier A, Seve M. Identification and cloning of a beta-cell-specific zinc transporter, ZnT-8, localized into insulin secretory granules. Diabetes 2004; 53(9): 2330–2337

    Article  PubMed  CAS  Google Scholar 

  22. Scotto M, Afonso G, Larger E, Raverdy C, Lemonnier FA, Carel JC, Dubois-Laforgue D, Baz B, Levy D, Gautier JF, Launay O, Bruno G, Boitard C, Sechi LA, Hutton JC, Davidson HW, Mallone R. Zinc transporter (ZnT)8(186–194) is an immunodominant CD8+ T cell epitope in HLA-A2+ type 1 diabetic patients. Diabetologia 2012; 55(7): 2026–2031

    Article  PubMed  CAS  Google Scholar 

  23. Kawasaki E. ZnT8 and type 1 diabetes. Endocr J 2012; 59(7): 531–537

    Article  PubMed  CAS  Google Scholar 

  24. Xu J, Wang J, Chen B. SLC30A8 (ZnT8) variations and type 2 diabetes in the Chinese Han population. Genet Mol Res 2012; 11(2): 1592–1598

    Article  PubMed  CAS  Google Scholar 

  25. Cai L. Metallothionein as an adaptive protein prevents diabetes and its toxicity. Nonlinearity Biol Toxicol Med 2004; 2(2): 89–103

    Article  PubMed  CAS  Google Scholar 

  26. Cai L. Diabetic cardiomyopathy and its prevention by metallothionein: experimental evidence, possible mechanisms and clinical implications. Curr Med Chem 2007; 14(20): 2193–2203

    Article  PubMed  CAS  Google Scholar 

  27. Park JH, Grandjean CJ, Hart MH, Erdman SH, Pour P, Vanderhoof JA. Effect of pure zinc deficiency on glucose tolerance and insulin and glucagon levels. Am J Physiol 1986; 251(3 Pt 1): E273–E278

    PubMed  CAS  Google Scholar 

  28. Faure P, Roussel AM, Martinie M, Osman M, Favier A, Halimi S. Insulin sensitivity in zinc-depleted rats: assessment with the euglycaemic hyperinsulinic clamp technique. Diabete Metab 1991; 17(3): 325–331

    PubMed  CAS  Google Scholar 

  29. Jou MY, Philipps AF, Lönnerdal B. Maternal zinc deficiency in rats affects growth and glucose metabolism in the offspring by inducing insulin resistance postnatally. J Nutr 2010; 140(9): 1621–1627

    Article  PubMed  CAS  Google Scholar 

  30. Singh RB, Niaz MA, Rastogi SS, Bajaj S, Gaoli Z, Shoumin Z. Current zinc intake and risk of diabetes and coronary artery disease and factors associated with insulin resistance in rural and urban populations of North India. J Am Coll Nutr 1998; 17(6): 564–570

    PubMed  CAS  Google Scholar 

  31. Himoto T, Yoneyama H, Kurokochi K, Inukai M, Masugata H, Goda F, Haba R, Watanabe S, Senda S, Masaki T. Contribution of zinc deficiency to insulin resistance in patients with primary biliary cirrhosis. Biol Trace Elem Res 2011; 144(1–3): 133–142

    Article  PubMed  CAS  Google Scholar 

  32. Chausmer AB. Zinc, insulin and diabetes. J Am Coll Nutr 1998; 17(2): 109–115

    PubMed  CAS  Google Scholar 

  33. Haglund B, Ryckenberg K, Selinus O, Dahlquist G. Evidence of a relationship between childhood-onset type I diabetes and low groundwater concentration of zinc. Diabetes Care 1996; 19(8): 873–875

    Article  PubMed  CAS  Google Scholar 

  34. Zhao HX, Mold MD, Stenhouse EA, Bird SC, Wright DE, Demaine AG, Millward BA. Drinking water composition and childhood-onset Type 1 diabetes mellitus in Devon and Cornwall, England. Diabet Med 2001; 18(9): 709–717

    Article  PubMed  CAS  Google Scholar 

  35. Benson VS, Vanleeuwen JA, Taylor J, Somers GS, McKinney PA, Van Til L. Type 1 diabetes mellitus and components in drinking water and diet: a population-based, case-control study in Prince Edward Island, Canada. J Am Coll Nutr 2010; 29(6): 612–624

    PubMed  CAS  Google Scholar 

  36. Samuelsson U, Oikarinen S, Hyöty H, Ludvigsson J. Low zinc in drinking water is associated with the risk of type 1 diabetes in children. Pediatr Diabetes 2011; 12(3 Pt 1): 156–164

    Article  PubMed  CAS  Google Scholar 

  37. Moltchanova E, Rytkönen M, Kousa A, Taskinen O, Tuomilehto J, Karvonen M. Zinc and nitrate in the ground water and the incidence of Type 1 diabetes in Finland. Diabet Med 2004; 21(3): 256–261

    Article  PubMed  CAS  Google Scholar 

  38. Goldberg ED, Eshchenko VA, Bovt VD. The diabetogenic and acidotropic effects of chelators. Exp Pathol 1991; 42(1): 59–64

    Article  PubMed  CAS  Google Scholar 

  39. Goldberg ED, Eshchenko VA, Bovt VD. Diabetogenic activity of chelators in some mammalian species. Endocrinologie 1990; 28(2): 51–55

    PubMed  CAS  Google Scholar 

  40. Kechrid Z, Bouzerna N, Zio MS. Effect of low zinc diet on (65)Zn turnover in non-insulin dependent diabetic mice. Diabetes Metab 2001; 27(5 Pt 1): 580–583

    PubMed  CAS  Google Scholar 

  41. Reiterer G, MacDonald R, Browning JD, Morrow J, Matveev SV, Daugherty A, Smart E, Toborek M, Hennig B. Zinc deficiency increases plasma lipids and atherosclerotic markers in LDLreceptor-deficient mice. J Nutr 2005; 135(9): 2114–2118

    PubMed  CAS  Google Scholar 

  42. Shen H, MacDonald R, Bruemmer D, Stromberg A, Daugherty A, Li XA, Toborek M, Hennig B. Zinc deficiency alters lipid metabolism in LDL receptor deficient mice treated with rosiglitazone. J Nutr 2007; 137(11): 2339–2345

    PubMed  CAS  Google Scholar 

  43. Tomat AL, Weisstaub AR, Jauregui A, Piñeiro A, Balaszczuk AM, Costa MA, Arranz CT. Moderate zinc deficiency influences arterial blood pressure and vascular nitric oxide pathway in growing rats. Pediatr Res 2005; 58(4): 672–676

    Article  PubMed  CAS  Google Scholar 

  44. Tomat AL, Costa MA, Girgulsky LC, Veiras L, Weisstaub AR, Inserra F, Balaszczuk AM, Arranz CT. Zinc deficiency during growth: influence on renal function and morphology. Life Sci 2007; 80(14): 1292–1302

    Article  PubMed  CAS  Google Scholar 

  45. Shen H, Oesterling E, Stromberg A, Toborek M, MacDonald R, Hennig B. Zinc deficiency induces vascular pro-inflammatory parameters associated with NF-κB and PPAR signaling. J Am Coll Nutr 2008; 27(5): 577–587

    PubMed  CAS  Google Scholar 

  46. Zhao Y, Tan Y, Dai J, Li B, Guo L, Cui J, Wang G, Shi X, Zhang X, Mellen N, Li W, Cai L. Exacerbation of diabetes-induced testicular apoptosis by zinc deficiency is most likely associated with oxidative stress, p38 MAPK activation, and p53 activation in mice. Toxicol Lett 2011; 200(1–2): 100–106

    Article  PubMed  CAS  Google Scholar 

  47. Zhao Y, Tan Y, Dai J, Wang B, Li B, Guo L, Cui J, Wang G, Li W, Cai L. Zinc deficiency exacerbates diabetic down-regulation of Akt expression and function in the testis: essential roles of PTEN, PTP1B and TRB3. J Nutr Biochem 2012; 23(8): 1018–1026

    Article  PubMed  CAS  Google Scholar 

  48. Zhang C, Lu X, Tan Y, Li B, Miao X, Jin L, Shi X, Zhang X, Miao L, Li X, Cai L. Diabetes-induced hepatic pathogenic damage, inflammation, oxidative stress, and insulin resistance was exacerbated in zinc deficient mouse model. PLoS ONE 2012; 7(12): e49257

    Article  PubMed  CAS  Google Scholar 

  49. Soinio M, Marniemi J, Laakso M, Pyörälä K, Lehto S, Rönnemaa T. Serum zinc level and coronary heart disease events in patients with type 2 diabetes. Diabetes Care 2007; 30(3): 523–528

    Article  PubMed  CAS  Google Scholar 

  50. Terrés-Martos C, Navarro-Alarcón M, Martín-Lagos F, López-G de la Serrana H, Pérez-Valero V, López-Martínez MC. Serum zinc and copper concentrations and Cu/Zn ratios in patients with hepatopathies or diabetes. J Trace Elem Med Biol 1998; 12(1): 44–49

    Article  PubMed  Google Scholar 

  51. Anderson RA, Roussel AM, Zouari N, Mahjoub S, Matheau JM, Kerkeni A. Potential antioxidant effects of zinc and chromium supplementation in people with type 2 diabetes mellitus. J Am Coll Nutr 2001; 20(3): 212–218

    PubMed  CAS  Google Scholar 

  52. Anetor JI, Senjobi A, Ajose OA, Agbedana EO. Decreased serum magnesium and zinc levels: atherogenic implications in type-2 diabetes mellitus in Nigerians. Nutr Health 2002; 16(4): 291–300

    Article  PubMed  CAS  Google Scholar 

  53. Roussel AM, Kerkeni A, Zouari N, Mahjoub S, Matheau JM, Anderson RA. Antioxidant effects of zinc supplementation in Tunisians with type 2 diabetes mellitus. J Am Coll Nutr 2003; 22(4): 316–321

    PubMed  CAS  Google Scholar 

  54. Levine AS, McClain CJ, Handwerger BS, Brown DM, Morley JE. Tissue zinc status of genetically diabetic and streptozotocininduced diabetic mice. Am J Clin Nutr 1983; 37(3): 382–386

    PubMed  CAS  Google Scholar 

  55. Faure P, Roussel A, Coudray C, Richard MJ, Halimi S, Favier A. Zinc and insulin sensitivity. Biol Trace Elem Res 1992;32(1–3): 305–310

    Article  PubMed  CAS  Google Scholar 

  56. el-Yazigi A, Hannan N, Raines DA. Effect of diabetic state and related disorders on the urinary excretion of magnesium and zinc in patients. Diabetes Res 1993; 22(2): 67–75

    PubMed  CAS  Google Scholar 

  57. Golik A, Cohen N, Ramot Y, Maor J, Moses R, Weissgarten J, Leonov Y, Modai D. Type II diabetes mellitus, congestive heart failure, and zinc metabolism. Biol Trace Elem Res 1993; 39(2–3): 171–175

    Article  PubMed  CAS  Google Scholar 

  58. Williams NR, Rajput-Williams J, West JA, Nigdikar SV, Foote JW, Howard AN. Plasma, granulocyte and mononuclear cell copper and zinc in patients with diabetes mellitus. Analyst (Lond) 1995; 120(3): 887–890

    Article  CAS  Google Scholar 

  59. Blostein-Fujii A, DiSilvestro RA, Frid D, Katz C, Malarkey W. Short-term zinc supplementation in women with non-insulindependent diabetes mellitus: effects on plasma 5′-nucleotidase activities, insulin-like growth factor I concentrations, and lipoprotein oxidation rates in vitro. Am J Clin Nutr 1997; 66(3): 639–642

    PubMed  CAS  Google Scholar 

  60. Honnorat J, Accominotti M, Broussolle C, Fleuret AC, Vallon JJ, Orgiazzi J. Effects of diabetes type and treatment on zinc status in diabetes mellitus. Biol Trace Elem Res 1992; 32(1–3): 311–316

    Article  PubMed  CAS  Google Scholar 

  61. Quilliot D, Dousset B, Guerci B, Dubois F, Drouin P, Ziegler O. Evidence that diabetes mellitus favors impaired metabolism of zinc, copper, and selenium in chronic pancreatitis. Pancreas 2001; 22(3): 299–306

    Article  PubMed  CAS  Google Scholar 

  62. Pathak A, Sharma V, Kumar S, Dhawan DK. Supplementation of zinc mitigates the altered uptake and turnover of 65Zn in liver and whole body of diabetic rats. Biometals 2011; 24(6): 1027–1034

    Article  PubMed  CAS  Google Scholar 

  63. Smidt K, Jessen N, Petersen AB, Larsen A, Magnusson N, Jeppesen JB, Stoltenberg M, Culvenor JG, Tsatsanis A, Brock B, Schmitz O, Wogensen L, Bush AI, Rungby J. SLC30A3 responds to glucose- and zinc variations in beta-cells and is critical for insulin production and in vivo glucose-metabolism during beta-cell stress. PLoS ONE 2009; 4(5): e5684

    Article  PubMed  CAS  Google Scholar 

  64. Jansen J, Rosenkranz E, Overbeck S, Warmuth S, Mocchegiani E, Giacconi R, Weiskirchen R, Karges W, Rink L. Disturbed zinc homeostasis in diabetic patients by in vitro and in vivo analysis of insulinomimetic activity of zinc. J Nutr Biochem 2012; 23(11): 1458–1466

    Article  PubMed  CAS  Google Scholar 

  65. Liu BY, Jiang Y, Lu Z, Li S, Lu D, Chen B. Down-regulation of zinc transporter 8 in the pancreas of db/db mice is rescued by Exendin-4 administration. Mol Med Report 2011; 4(1): 47–52

    CAS  Google Scholar 

  66. Foster M, Karra M, Picone T, Chu A, Hancock DP, Petocz P, Samman S. Dietary fiber intake increases the risk of zinc deficiency in healthy and diabetic women. Biol Trace Elem Res 2012; 149(2): 135–142

    Article  PubMed  CAS  Google Scholar 

  67. Failla ML, Kiser RA. Altered tissue content and cytosol distribution of trace metals in experimental diabetes. J Nutr 1981; 111(11): 1900–1909

    PubMed  CAS  Google Scholar 

  68. Failla ML, Kiser RA. Hepatic and renal metabolism of copper and zinc in the diabetic rat. Am J Physiol 1983; 244(2): E115–E121

    PubMed  CAS  Google Scholar 

  69. Craft NE, Failla ML. Zinc, iron, and copper absorption in the streptozotocin-diabetic rat. Am J Physiol 1983; 244(2): E122–E128

    PubMed  CAS  Google Scholar 

  70. Escobar O, Sandoval M, Vargas A, Hempe JM. Role of metallothionein and cysteine-rich intestinal protein in the regulation of zinc absorption by diabetic rats. Pediatr Res 1995; 37(3): 321–327

    Article  PubMed  CAS  Google Scholar 

  71. Chen ML, Failla ML. Metallothionein metabolism in the liver and kidney of the streptozotocin-diabetic rat. Comp Biochem Physiol B 1988; 90(2): 439–445

    PubMed  CAS  Google Scholar 

  72. Jin T, Nordberg G, Sehlin J, Vesterberg O. Protection against cadmium-metallothionein nephrotoxicity in streptozotocininduced diabetic rats: role of increased metallothionein synthesis induced by streptozotocin. Toxicology 1996; 106(1–3): 55–63

    Article  PubMed  CAS  Google Scholar 

  73. Kennedy ML, Failla ML. Zinc metabolism in genetically obese (ob/ob) mice. J Nutr 1987; 117(5): 886–893

    PubMed  CAS  Google Scholar 

  74. Failla ML, Gardell CY. Influence of spontaneous diabetes on tissue status of zinc, copper, and manganese in the BB Wistar rat. Proc Soc Exp Biol Med 1985; 180(2): 317–322

    PubMed  CAS  Google Scholar 

  75. Cai L, Chen S, Evans T, Cherian MG, Chakrabarti S. Endothelin-1-mediated alteration of metallothionein and trace metals in the liver and kidneys of chronically diabetic rats. Int J Exp Diabetes Res 2002; 3(3): 193–198

    Article  PubMed  Google Scholar 

  76. Ayaz M, Turan B. Selenium prevents diabetes-induced alterations in [Zn2+]i and metallothionein level of rat heart via restoration of cell redox cycle. Am J Physiol Heart Circ Physiol 2006; 290(3): H1071–H1080

    Article  PubMed  CAS  Google Scholar 

  77. Tadros WM, Awadallah R, Doss H, Khalifa K. Protective effect of trace elements (Zn, Mn, Cr, Co) on alloxan-induced diabetes. Indian J Exp Biol 1982; 20(1): 93–94

    PubMed  CAS  Google Scholar 

  78. Yang J, Cherian MG. Protective effects of metallothionein on streptozotocin-induced diabetes in rats. Life Sci 1994; 55(1): 43–51

    Article  PubMed  CAS  Google Scholar 

  79. Ho E, Quan N, Tsai YH, Lai W, Bray TM. Dietary zinc supplementation inhibits NFkappaB activation and protects against chemically induced diabetes in CD1 mice. Exp Biol Med (Maywood) 2001; 226(2): 103–111

    CAS  Google Scholar 

  80. Ohly P, Dohle C, Abel J, Seissler J, Gleichmann H. Zinc sulphate induces metallothionein in pancreatic islets of mice and protects against diabetes induced by multiple low doses of streptozotocin. Diabetologia 2000; 43(8): 1020–1030

    Article  PubMed  CAS  Google Scholar 

  81. Sitasawad S, Deshpande M, Katdare M, Tirth S, Parab P. Beneficial effect of supplementation with copper sulfate on STZdiabetic mice (IDDM). Diabetes Res Clin Pract 2001; 52(2): 77–84

    Article  PubMed  CAS  Google Scholar 

  82. Marreiro DN, Geloneze B, Tambascia MA, Lerário AC, Halpern A, Cozzolino SM. Effect of zinc supplementation on serum leptin levels and insulin resistance of obese women. Biol Trace Elem Res 2006; 112(2): 109–118

    Article  PubMed  CAS  Google Scholar 

  83. Hashemipour M, Kelishadi R, Shapouri J, Sarrafzadegan N, Amini M, Tavakoli N, Movahedian-Attar A, Mirmoghtadaee P, Poursafa P. Effect of zinc supplementation on insulin resistance and components of the metabolic syndrome in prepubertal obese children. Hormones (Athens) 2009; 8(4): 279–285

    Google Scholar 

  84. Kim J, Lee S. Effect of zinc supplementation on insulin resistance and metabolic risk factors in obese Korean women. Nurs Res Pract 2012; 6(3): 221–225

    Google Scholar 

  85. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001; 414(6865): 813–820

    Article  PubMed  CAS  Google Scholar 

  86. Cai L, Kang YJ. Oxidative stress and diabetic cardiomyopathy: a brief review. Cardiovasc Toxicol 2001; 1(3): 181–193

    Article  PubMed  CAS  Google Scholar 

  87. Srinivasan S, Hatley ME, Bolick DT, Palmer LA, Edelstein D, Brownlee M, Hedrick CC. Hyperglycaemia-induced superoxide production decreases eNOS expression via AP-1 activation in aortic endothelial cells. Diabetologia 2004; 47(10): 1727–1734

    Article  PubMed  CAS  Google Scholar 

  88. Zou MH, Shi C, Cohen RA. Oxidation of the zinc-thiolate complex and uncoupling of endothelial nitric oxide synthase by peroxynitrite. J Clin Invest 2002; 109(6): 817–826

    PubMed  CAS  Google Scholar 

  89. Mooradian AD, Morley JE, Scarpace PJ. The role of zinc status in altered cardiac adenylate cyclase activity in diabetic rats. Acta Endocrinol (Copenh) 1988; 119(2): 174–180

    CAS  Google Scholar 

  90. Noh SK, Koo SI. Feeding of a low-zinc diet lowers the tissue concentrations of alpha-tocopherol in adult rats. Biol Trace Elem Res 2001; 81(2): 153–168

    Article  PubMed  CAS  Google Scholar 

  91. Chvapil M, Owen JA. Effect of zinc on acute and chronic isoproterenol induced heart injury. J Mol Cell Cardiol 1977; 9(2): 151–159

    Article  PubMed  CAS  Google Scholar 

  92. Singal PK, Dhillon KS, Beamish RE, Dhalla NS. Protective effect of zinc against catecholamine-induced myocardial changes electrocardiographic and ultrastructural studies. Lab Invest 1981; 44(5): 426–433

    PubMed  CAS  Google Scholar 

  93. Satoh M, Naganuma A, Imura N. Modulation of adriamycin toxicity by tissue-specific induction of metallothionein synthesis in mice. Life Sci 2000; 67(6): 627–634

    Article  PubMed  CAS  Google Scholar 

  94. Fushimi H, Inoue T, Yamada Y, Horie H, Kameyama M, Inoue K, Minami T, Okazaki Y. Zinc deficiency exaggerates diabetic osteoporosis. Diabetes Res Clin Pract 1993; 20(3): 191–196

    Article  PubMed  CAS  Google Scholar 

  95. Faure P, Benhamou PY, Perard A, Halimi S, Roussel AM. Lipid peroxidation in insulin-dependent diabetic patients with early retina degenerative lesions: effects of an oral zinc supplementation. Eur J Clin Nutr 1995; 49(4): 282–288

    PubMed  CAS  Google Scholar 

  96. Kajanachumpol S, Srisurapanon S, Supanit I, Roongpisuthipong C, Apibal S. Effect of zinc supplementation on zinc status, copper status and cellular immunity in elderly patients with diabetes mellitus. J Med Assoc Thai 1995; 78(7): 344–349

    PubMed  CAS  Google Scholar 

  97. de Sena KC, Arrais RF, das Graças Almeida M, de Araújo DM, dos Santos MM, de Lima VT, de Fãtima Campos Pedrosa L. Effects of zinc supplementation in patients with type 1 diabetes. Biol Trace Elem Res 2005; 105(1–3): 1–9

    Article  PubMed  Google Scholar 

  98. Seet RC, Lee CY, Lim EC, Quek AM, Huang H, Huang SH, Looi WF, Long LH, Halliwell B. Oral zinc supplementation does not improve oxidative stress or vascular function in patients with type 2 diabetes with normal zinc levels. Atherosclerosis 2011; 219(1): 231–239

    Article  PubMed  CAS  Google Scholar 

  99. Evans SA, Overton JM, Alshingiti A, Levenson CW. Regulation of metabolic rate and substrate utilization by zinc deficiency. Metabolism 2004; 53(6): 727–732

    Article  PubMed  CAS  Google Scholar 

  100. Simon SF, Taylor CG. Dietary zinc supplementation attenuates hyperglycemia in db/db mice. Exp Biol Med (Maywood) 2001; 226(1): 43–51

    CAS  Google Scholar 

  101. Mantzoros CS, Prasad AS, Beck FW, Grabowski S, Kaplan J, Adair C, Brewer GJ. Zinc may regulate serum leptin concentrations in humans. J Am Coll Nutr 1998; 17(3): 270–275

    PubMed  CAS  Google Scholar 

  102. Chen MD, Song YM, Lin PY. Zinc effects on hyperglycemia and hypoleptinemia in streptozotocin-induced diabetic mice. Horm Metab Res 2000; 32(3): 107–109

    Article  PubMed  CAS  Google Scholar 

  103. Chen MD, Song YM, Lin PY. Zinc may be a mediator of leptin production in humans. Life Sci 2000; 66(22): 2143–2149

    Article  PubMed  CAS  Google Scholar 

  104. Canesi L, Betti M, Ciacci C, Gallo G. Insulin-like effect of zinc in mytilus digestive gland cells: modulation of tyrosine kinasemediated cell signaling. Gen Comp Endocrinol 2001; 122(1): 60–66

    Article  PubMed  CAS  Google Scholar 

  105. Tang X, Shay NF. Zinc has an insulin-like effect on glucose transport mediated by phosphoinositol-3-kinase and Akt in 3T3-L1 fibroblasts and adipocytes. J Nutr 2001; 131(5): 1414–1420

    PubMed  CAS  Google Scholar 

  106. Haase H, Maret W. Intracellular zinc fluctuations modulate protein tyrosine phosphatase activity in insulin/insulin-like growth factor-1 signaling. Exp Cell Res 2003; 291(2): 289–298

    Article  PubMed  CAS  Google Scholar 

  107. Miranda ER, Dey CS. Effect of chromium and zinc on insulin signaling in skeletal muscle cells. Biol Trace Elem Res 2004; 101(1): 19–36

    Article  PubMed  CAS  Google Scholar 

  108. May JM, Contoreggi CS. The mechanism of the insulin-like effects of ionic zinc. J Biol Chem 1982; 257(8): 4362–4368

    PubMed  CAS  Google Scholar 

  109. Chen MD, Liou SJ, Lin PY, Yang VC, Alexander PS, Lin WH. Effects of zinc supplementation on the plasma glucose level and insulin activity in genetically obese (ob/ob) mice. Biol Trace Elem Res 1998; 61(3): 303–311

    Article  PubMed  CAS  Google Scholar 

  110. Kolaczynski JW, Caro JF. Insulin-like growth factor-1 therapy in diabetes: physiologic basis, clinical benefits, and risks. Ann Intern Med 1994; 120(1): 47–55

    PubMed  CAS  Google Scholar 

  111. McCusker RH, Mateski RL, Novakofski J. Zinc alters the kinetics of IGF-II binding to cell surface receptors and binding proteins. Endocrine 2003; 21(3): 279–288

    Article  PubMed  CAS  Google Scholar 

  112. McCusker RH, Novakofski J. Zinc partitions IGFs from soluble IGF binding proteins (IGFBP)-5, but not soluble IGFBP-4, to myoblast IGF type 1 receptors. J Endocrinol 2004; 180(2): 227–246

    Article  PubMed  CAS  Google Scholar 

  113. Ilouz R, Kaidanovich O, Gurwitz D, Eldar-Finkelman H. Inhibition of glycogen synthase kinase-3beta by bivalent zinc ions: insight into the insulin-mimetic action of zinc. Biochem Biophys Res Commun 2002; 295(1): 102–106

    Article  PubMed  CAS  Google Scholar 

  114. Chanoit G, Lee S, Xi J, Zhu M, McIntosh RA, Mueller RA, Norfleet EA, Xu Z. Exogenous zinc protects cardiac cells from reperfusion injury by targeting mitochondrial permeability transition pore through inactivation of glycogen synthase kinase-3beta. Am J Physiol Heart Circ Physiol 2008; 295(3): H1227–H1233

    Article  PubMed  CAS  Google Scholar 

  115. Lee S, Chanoit G, McIntosh R, Zvara DA, Xu Z. Molecular mechanism underlying Akt activation in zinc-induced cardioprotection. Am J Physiol Heart Circ Physiol 2009; 297(2): H569–H575

    Article  PubMed  CAS  Google Scholar 

  116. Haase H, Maret W. Protein tyrosine phosphatases as targets of the combined insulinomimetic effects of zinc and oxidants. Biometals 2005; 18(4): 333–338

    Article  PubMed  CAS  Google Scholar 

  117. Haase H, Maret W. Fluctuations of cellular, available zinc modulate insulin signaling via inhibition of protein tyrosine phosphatases. J Trace Elem Med Biol 2005; 19(1): 37–42

    Article  PubMed  CAS  Google Scholar 

  118. Wu W, Wang X, Zhang W, Reed W, Samet JM, Whang YE, Ghio AJ. Zinc-induced PTEN protein degradation through the proteasome pathway in human airway epithelial cells. J Biol Chem 2003; 278(30): 28258–28263

    Article  PubMed  CAS  Google Scholar 

  119. Cameron AR, Anil S, Sutherland E, Harthill J, Rena G. Zincdependent effects of small molecules on the insulin-sensitive transcription factor FOXO1a and gluconeogenic genes. Metallomics 2010; 2(3): 195–203

    Article  PubMed  CAS  Google Scholar 

  120. Prasad AS, Bao B, Beck FW, Kucuk O, Sarkar FH. Antioxidant effect of zinc in humans. Free Radic Biol Med 2004; 37(8): 1182–1190

    Article  PubMed  CAS  Google Scholar 

  121. Kakkar R, Mantha SV, Radhi J, Prasad K, Kalra J. Increased oxidative stress in rat liver and pancreas during progression of streptozotocin-induced diabetes. Clin Sci (Lond) 1998; 94(6): 623–632

    CAS  Google Scholar 

  122. Collet JF, D’Souza JC, Jakob U, Bardwell JC. Thioredoxin 2, an oxidative stress-induced protein, contains a high affinity zinc binding site. J Biol Chem 2003; 278(46): 45325–45332

    Article  PubMed  CAS  Google Scholar 

  123. Hagay ZJ, Weiss Y, Zusman I, Peled-Kamar M, Reece EA, Eriksson UJ, Groner Y. Prevention of diabetes-associated embryopathy by overexpression of the free radical scavenger copper zinc superoxide dismutase in transgenic mouse embryos. Am J Obstet Gynecol 1995; 173(4): 1036–1041

    Article  PubMed  CAS  Google Scholar 

  124. Bray TM, Bettger WJ. The physiological role of zinc as an antioxidant. Free Radic Biol Med 1990; 8(3): 281–291

    Article  PubMed  CAS  Google Scholar 

  125. Anderson RA, Roussel AM, Zouari N, Mahjoub S, Matheau JM, Kerkeni A. Potential antioxidant effects of zinc and chromium supplementation in people with type 2 diabetes mellitus. J Am Coll Nutr 2001; 20(3): 212–218

    PubMed  CAS  Google Scholar 

  126. Roussel AM, Kerkeni A, Zouari N, Mahjoub S, Matheau JM, Anderson RA. Antioxidant effects of zinc supplementation in Tunisians with type 2 diabetes mellitus. J Am Coll Nutr 2003; 22(4): 316–321

    PubMed  CAS  Google Scholar 

  127. Moi P, Chan K, Asunis I, Cao A, Kan YW. Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region. Proc Natl Acad Sci USA 1994; 91(21): 9926–9930

    Article  PubMed  CAS  Google Scholar 

  128. Li B, Liu S, Miao L, Cai L. Prevention of diabetic complications by activation of Nrf2: diabetic cardiomyopathy and nephropathy. Exp Diabetes Res 2012; 2012: 216512

    PubMed  Google Scholar 

  129. Mehta AJ, Joshi PC, Fan X, Brown LA, Ritzenthaler JD, Roman J, Guidot DM. Zinc supplementation restores PU.1 and Nrf2 nuclear binding in alveolar macrophages and improves redox balance and bacterial clearance in the lungs of alcohol-fed rats. Alcohol Clin Exp Res 2011; 35(8): 1519–1528

    PubMed  CAS  Google Scholar 

  130. Cortese MM, Suschek CV, Wetzel W, Kröncke KD, Kolb-Bachofen V. Zinc protects endothelial cells from hydrogen peroxide via Nrf2-dependent stimulation of glutathione biosynthesis. Free Radic Biol Med 2008; 44(12): 2002–2012

    Article  PubMed  CAS  Google Scholar 

  131. Ha KN, Chen Y, Cai J, Sternberg P Jr. Increased glutathione synthesis through an ARE-Nrf2-dependent pathway by zinc in the RPE: implication for protection against oxidative stress. Invest Ophthalmol Vis Sci 2006; 47(6): 2709–2715

    Article  PubMed  Google Scholar 

  132. Aguilar MV, Laborda JM, Martínez-Para MC, González MJ, Meseguer I, Bernao A, Mateos CJ. Effect of diabetes on the tissular Zn/Cu ratio. J Trace Elem Med Biol 1998; 12(3): 155–158

    Article  PubMed  CAS  Google Scholar 

  133. Zargar AH, Shah NA, Masoodi SR, Laway BA, Dar FA, Khan AR, Sofi FA, Wani AI. Copper, zinc, and magnesium levels in noninsulin dependent diabetes mellitus. Postgrad Med J 1998; 74(877): 665–668

    Article  PubMed  CAS  Google Scholar 

  134. Ripa S, Ripa R, Giustiniani S. Are failured cardiomyopathies a zinc-deficit related disease? A study on Zn and Cu in patients with chronic failured dilated and hypertrophic cardiomyopathies. Minerva Med 1998; 89(11–12): 397–403

    PubMed  CAS  Google Scholar 

  135. Canatan H, Bakan I, Akbulut M, Halifeoglu I, Cikim G, Baydas G, Kilic N. Relationship among levels of leptin and zinc, copper, and zinc/copper ratio in plasma of patients with essential hypertension and healthy normotensive subjects. Biol Trace Elem Res 2004; 100(2): 117–123

    Article  PubMed  CAS  Google Scholar 

  136. Maldonado Martín A, Gil Extremera B, Fernández Soto M, Ruiz Martínez M, González Jiménez A, Guijarro Morales A, de Dios Luna del Castillo J. Zinc levels after intravenous administration of zinc sulphate in insulin-dependent diabetes mellitus patients. Klin Wochenschr 1991; 69(14): 640–644

    Article  PubMed  Google Scholar 

  137. Niewoehner CB, Allen JI, Boosalis M, Levine AS, Morley JE. Role of zinc supplementation in type II diabetes mellitus. Am J Med 1986; 81(1): 63–68

    Article  PubMed  CAS  Google Scholar 

  138. Mocchegiani E, Boemi M, Fumelli P, Fabris N. Zinc-dependent low thymic hormone level in type I diabetes. Diabetes 1989; 38(7): 932–937

    Article  PubMed  CAS  Google Scholar 

  139. Kajanachumpol S, Srisurapanon S, Supanit I, Roongpisuthipong C, Apibal S. Effect of zinc supplementation on zinc status, copper status and cellular immunity in elderly patients with diabetes mellitus. J Med Assoc Thai 1995; 78(7): 344–349

    PubMed  CAS  Google Scholar 

  140. Kang YJ. The antioxidant function of metallothionein in the heart. Proceedings of the Society for Experimental Biology and Medicine. Soci Exp Biol Med. 1999; 222(3): 263–273

    Article  CAS  Google Scholar 

  141. Cai L, Cherian MG. Adaptive response to ionizing radiationinduced chromosome aberrations in rabbit lymphocytes: effect of pre-exposure to zinc, and copper salts. Mutat Res 1996; 369(3–4): 233–241

    PubMed  CAS  Google Scholar 

  142. Cai L, Cherian MG, Iskander S, Leblanc M, Hammond RR. Metallothionein induction in human CNS in vitro: neuroprotection from ionizing radiation. Int J Radiat Biol 2000; 76(7): 1009–1017

    Article  PubMed  CAS  Google Scholar 

  143. Cai L, Iskander S, Cherian MG, Hammond RR. Zinc- or cadmiumpre-induced metallothionein protects human central nervous system cells and astrocytes from radiation-induced apoptosis. Toxicol Lett 2004; 146(3): 217–226

    Article  PubMed  CAS  Google Scholar 

  144. Satoh M, Naganuma A, Imura N. Modulation of adriamycin toxicity by tissue-specific induction of metallothionein synthesis in mice. Life Sci 2000; 67(6): 627–634

    Article  PubMed  CAS  Google Scholar 

  145. Ali MM, Frei E, Straub J, Breuer A, Wiessler M. Induction of metallothionein by zinc protects from daunorubicin toxicity in rats. Toxicology 2002; 179(1–2): 85–93

    Article  PubMed  CAS  Google Scholar 

  146. Song Y, Wang J, Li Y, Du Y, Arteel GE, Saari JT, Kang YJ, Cai L. Cardiac metallothionein synthesis in streptozotocin-induced diabetic mice, and its protection against diabetes-induced cardiac injury. Am J Pathol 2005; 167(1): 17–26

    Article  PubMed  CAS  Google Scholar 

  147. Wang Y, Feng W, Xue W, Tan Y, Hein DW, Li XK, Cai L. Inactivation of GSK-3beta by metallothionein prevents diabetesrelated changes in cardiac energy metabolism, inflammation, nitrosative damage, and remodeling. Diabetes 2009; 58(6): 1391–1402

    Article  PubMed  CAS  Google Scholar 

  148. Xu J, Wang G, Wang Y, Liu Q, Xu W, Tan Y, Cai L. Diabetes- and angiotensin II-induced cardiac endoplasmic reticulum stress and cell death: metallothionein protection. J Cell Mol Med 2009; 13(8a 8A): 1499–1512

    Article  PubMed  CAS  Google Scholar 

  149. Liang Q, Carlson EC, Donthi RV, Kralik PM, Shen X, Epstein PN. Overexpression of metallothionein reduces diabetic cardiomyopathy. Diabetes 2002; 51(1): 174–181

    Article  PubMed  CAS  Google Scholar 

  150. Ye G, Metreveli NS, Ren J, Epstein PN. Metallothionein prevents diabetes-induced deficits in cardiomyocytes by inhibiting reactive oxygen species production. Diabetes 2003; 52(3): 777–783

    Article  PubMed  CAS  Google Scholar 

  151. Cai L. Suppression of nitrative damage by metallothionein in diabetic heart contributes to the prevention of cardiomyopathy. Free Radic Biol Med 2006; 41(6): 851–861

    Article  PubMed  CAS  Google Scholar 

  152. Cai L, Wang Y, Zhou G, Chen T, Song Y, Li X, Kang YJ. Attenuation by metallothionein of early cardiac cell death via suppression of mitochondrial oxidative stress results in a prevention of diabetic cardiomyopathy. J Am Coll Cardiol 2006; 48(8): 1688–1697

    Article  PubMed  CAS  Google Scholar 

  153. Wang J, Song Y, Elsherif L, Song Z, Zhou G, Prabhu SD, Saari JT, Cai L. Cardiac metallothionein induction plays the major role in the prevention of diabetic cardiomyopathy by zinc supplementation. Circulation 2006; 113(4): 544–554

    Article  PubMed  CAS  Google Scholar 

  154. Tang Y, Yang Q, Lu J, Zhang X, Suen D, Tan Y, Jin L, Xiao J, Xie R, Rane M, Li X, Cai L. Zinc supplementation partially prevents renal pathological changes in diabetic rats. J Nutr Biochem 2010; 21(3): 237–246

    Article  PubMed  CAS  Google Scholar 

  155. Özcelik D, Nazıroglu M, Tunçdemir M, Celik O, Oztürk M, Flores-Arce MF. Zinc supplementation attenuates metallothionein and oxidative stress changes in kidney of streptozotocin-induced diabetic rats. Biol Trace Elem Res 2012; 150(1–3): 342–349

    Article  PubMed  CAS  Google Scholar 

  156. Salgueiro MJ, Krebs N, Zubillaga MB, Weill R, Postaire E, Lysionek AE, Caro RA, De Paoli T, Hager A, Boccio J. Zinc and diabetes mellitus: is there a need of zinc supplementation in diabetes mellitus patients? Biol Trace Elem Res 2001; 81(3): 215–228

    Article  PubMed  CAS  Google Scholar 

  157. Foster M, Samman S. Zinc and redox signaling: perturbations associated with cardiovascular disease and diabetes mellitus. Antioxid Redox Signal 2010; 13, 1549–1573

    Article  PubMed  CAS  Google Scholar 

  158. Yoshikawa Y, Ueda E, Kojima Y, Sakurai H. The action mechanism of zinc(II) complexes with insulinomimetic activity in rat adipocytes. Life Sci 2004; 75(6): 741–751

    Article  PubMed  CAS  Google Scholar 

  159. Cai L, Li XK, Song Y, Cherian MG. Essentiality, toxicology and chelation therapy of zinc and copper. Curr Med Chem 2005; 12(23): 2753–2763

    Article  PubMed  CAS  Google Scholar 

  160. Bonham M, O’Connor JM, McAnena LB, Walsh PM, Downes CS, Hannigan BM, Strain JJ. Zinc supplementation has no effect on lipoprotein metabolism, hemostasis, and putative indices of copper status in healthy men. Biol Trace Elem Res 2003; 93(1–3): 75–86

    Article  PubMed  CAS  Google Scholar 

  161. Bonham M, O’Connor JM, Alexander HD, Coulter J, Walsh PM, McAnena LB, Downes CS, Hannigan BM, Strain JJ. Zinc supplementation has no effect on circulating levels of peripheral blood leucocytes and lymphocyte subsets in healthy adult men. Br J Nutr 2003; 89(5): 695–703

    Article  PubMed  CAS  Google Scholar 

  162. Alissa EM, Bahijri SM, Lamb DJ, Ferns GA. The effects of coadministration of dietary copper and zinc supplements on atherosclerosis, antioxidant enzymes and indices of lipid peroxidation in the cholesterol-fed rabbit. Int J Exp Pathol 2004; 85(5): 265–275

    Article  PubMed  CAS  Google Scholar 

  163. Anetor JI, Senjobi A, Ajose OA, Agbedana EO. Decreased serum magnesium and zinc levels: atherogenic implications in type-2 diabetes mellitus in Nigerians. Nutr Health 2002; 16(4): 291–300

    Article  PubMed  CAS  Google Scholar 

  164. Baydas B, Karagoz S, Meral I. Effects of oral zinc and magnesium supplementation on serum thyroid hormone and lipid levels in experimentally induced diabetic rats. Biol Trace Elem Res 2002; 88(3): 247–253

    Article  PubMed  CAS  Google Scholar 

  165. Disilvestro RA. Zinc in relation to diabetes and oxidative disease. J Nutrition 2000; 130(5S Suppl):1509S–1511S

    CAS  Google Scholar 

  166. Coulston L, Dandona P. Insulin-like effect of zinc on adipocytes. Diabetes 1980; 29(8): 665–667

    Article  PubMed  CAS  Google Scholar 

  167. Moniz T, Amorim MJ, Ferreira R, Nunes A, Silva A, Queirós C, Leite A, Gameiro P, Sarmento B, Remião F, Yoshikawa Y, Sakurai H, Rangel M. Investigation of the insulin-like properties of zinc(II) complexes of 3-hydroxy-4-pyridinones: identification of a compound with glucose lowering effect in STZ-induced type I diabetic animals. J Inorg Biochem 2011; 105(12): 1675–1682

    Article  PubMed  CAS  Google Scholar 

  168. McClain CJ, McClain M, Barve S, Boosalis MG. Trace metals and the elderly. Clin Geriatr Med 2002; 18(4): 801–818, vii–viii (viiviii.)

    Article  PubMed  Google Scholar 

  169. Sbarbati A, Mocchegiani E, Marzola P, Tibaldi A, Mannucci R, Nicolato E, Osculati F. Effect of dietary supplementation with zinc sulphate on the aging process: a study using high field intensity MRI and chemical shift imaging. Biomed Pharmacother 1998; 52(10): 454–458

    Article  PubMed  CAS  Google Scholar 

  170. Cunningham JJ, Fu A, Mearkle PL, Brown RG. Hyperzincuria in individuals with insulin-dependent diabetes mellitus: concurrent zinc status and the effect of high-dose zinc supplementation. Metabolism 1994; 43(12): 1558–1562

    Article  PubMed  CAS  Google Scholar 

  171. Velázquez-Pérez L, Rodríguez-Chanfrau J, García-Rodríguez JC, Sánchez-Cruz G, Aguilera-Rodríguez R, Rodríguez-Labrada R, Rodríguez-Díaz JC, Canales-Ochoa N, Gotay DA, Almaguer Mederos LE, Laffita Mesa JM, Porto-Verdecia M, Triana CG, Pupo NR, Batista IH, López-Hernandez OD, Polanco ID, Novas AJ. Oral zinc sulphate supplementation for six months in SCA2 patients: a randomized, double-blind, placebo-controlled trial. Neurochem Res 2011; 36(10): 1793–1800

    Article  PubMed  CAS  Google Scholar 

  172. Somi MH, Rezaeifar P, Ostad Rahimi A, Moshrefi B. Effects of low dose zinc supplementation on biochemical markers in nonalcoholic cirrhosis: a randomized clinical trial. Arch Iran Med 2012; 15(8): 472–476

    PubMed  CAS  Google Scholar 

  173. Yang J, Cherian MG. Protective effects of metallothionein on streptozotocin-induced diabetes in rats. Life Sci 1994; 55(1): 43–51

    Article  PubMed  CAS  Google Scholar 

  174. Chen MD, Lin PY, Cheng V, Lin WH. Zinc supplementation aggravates body fat accumulation in genetically obese mice and dietary-obese mice. Biol Trace Elem Res 1996; 52(2): 125–132

    Article  PubMed  CAS  Google Scholar 

  175. Tobia MH, Zdanowicz MM, Wingertzahn MA, McHeffey-Atkinson B, Slonim AE, Wapnir RA. The role of dietary zinc in modifying the onset and severity of spontaneous diabetes in the BB Wistar rat. Mol Genet Metab 1998; 63(3): 205–213

    Article  PubMed  CAS  Google Scholar 

  176. Simon SF, Taylor CG. Dietary zinc supplementation attenuates hyperglycemia in db/db mice. Exp Biol Med (Maywood) 2001; 226(1): 43–51

    CAS  Google Scholar 

  177. Ho E, Quan N, Tsai YH, Lai W, Bray TM. Dietary zinc supplementation inhibits NFkappaB activation and protects against chemically induced diabetes in CD1 mice. Exp Biol Med (Maywood) 2001; 226(2): 103–111

    CAS  Google Scholar 

  178. im Walde SS, Dohle C, Schott-Ohly P, Gleichmann H. Molecular target structures in alloxan-induced diabetes in mice. Life Sci 2002; 71(14): 1681–1694

    Article  PubMed  Google Scholar 

  179. Schott-Ohly P, Lgssiar A, Partke HJ, Hassan M, Friesen N, Gleichmann H. Prevention of spontaneous and experimentally induced diabetes in mice with zinc sulfate-enriched drinking water is associated with activation and reduction of NF-kappa B and AP-1 in islets, respectively. Exp Biol Med (Maywood) 2004; 229(11): 1177–1185

    CAS  Google Scholar 

  180. Yoshikawa Y, Adachi Y, Yasui H, Hattori M, Sakurai H. Oral administration of Bis(aspirinato)zinc(II) complex ameliorates hyperglycemia and metabolic syndrome-like disorders in spontaneously diabetic KK-A(y) mice: structure-activity relationship on zinc-salicylate complexes. Chem Pharm Bull (Tokyo) 2011; 59(8): 972–977

    Article  CAS  Google Scholar 

  181. Chen H, Carlson EC, Pellet L, Moritz JT, Epstein PN. Over-expression of metallothionein in pancreatic beta-cells reduces streptozotocin-induced DNA damage and diabetes. Diabetes 2001; 50(9): 2040–2046

    Article  PubMed  CAS  Google Scholar 

  182. Faure P, Benhamou PY, Perard A, Halimi S, Roussel AM. Lipid peroxidation in insulin-dependent diabetic patients with early retina degenerative lesions: effects of an oral zinc supplementation. Eur J Clin Nutr 1995; 49(4): 282–288

    PubMed  CAS  Google Scholar 

  183. Gupta R, Garg VK, Mathur DK, Goyal RK. Oral zinc therapy in diabetic neuropathy. J Assoc Physicians India 1998; 46(11): 939–942

    PubMed  CAS  Google Scholar 

  184. Parham M, Amini M, Aminorroaya A, Heidarian E. Effect of zinc supplementation on microalbuminuria in patients with type 2 diabetes: a double blind, randomized, placebo-controlled, crossover trial. Rev Diabet Stud 2008; 5(2): 102–109

    Article  PubMed  Google Scholar 

  185. Heidarian E, Amini M, Parham M, Aminorroaya A. Effect of zinc supplementation on serum homocysteine in type 2 diabetic patients with microalbuminuria. Rev Diabet Stud 2009; 6(1): 64–70

    Article  PubMed  Google Scholar 

  186. Yamaguchi M, Uchiyama S. Preventive effect of zinc acexamate administration in streptozotocin-diabetic rats: Restoration of bone loss. Int J Mol Med 2003; 12(5): 755–761

    PubMed  CAS  Google Scholar 

  187. Uchiyama S, Yamaguchi M. Alteration in serum and bone component findings induced in streptozotocin-diabetic rats is restored by zinc acexamate. Int J Mol Med 2003; 12(6): 949–954

    PubMed  CAS  Google Scholar 

  188. Moustafa SA. Zinc might protect oxidative changes in the retina and pancreas at the early stage of diabetic rats. Toxicol Appl Pharmacol 2004; 201(2): 149–155

    Article  PubMed  CAS  Google Scholar 

  189. Kumar SD, Vijaya M, Samy RP, Dheen ST, Ren M, Watt F, Kang YJ, Bay BH, Tay SS. Zinc supplementation prevents cardiomyocyte apoptosis and congenital heart defects in embryos of diabetic mice. Free Radic Biol Med 2012; 53(8): 1595–1606

    Article  PubMed  CAS  Google Scholar 

  190. Karatug A, Kaptan E, Bolkent S, Mutlu O, Yanardag R. Alterations in kidney tissue following zinc supplementation to stz-induced diabetic rats. J Trace Elem Med Biol 2012 Aug 31. [Epub ahead of print]

  191. Kojima Y, Yoshikawa Y, Ueda E, Ueda R, Yamamoto S, Kumekawa K, Yanagihara N, Sakurai H. Insulinomimetic zinc (II) complexes with natural products: in vitro evaluation and blood glucose lowering effect in KK-Ay mice with type 2 diabetes mellitus. Chem Pharm Bull (Tokyo) 2003; 51(8): 1006–1008

    Article  CAS  Google Scholar 

  192. Hwang IK, Go VL, Harris DM, Yip I, Kang KW, Song MK. Effects of cyclo (his-pro) plus zinc on glucose metabolism in genetically diabetic obese mice. Diabetes Obes Metab 2003; 5(5): 317–324

    Article  PubMed  CAS  Google Scholar 

  193. Song MK, Hwang IK, Rosenthal MJ, Harris DM, Yamaguchi DT, Yip I, Go VL. Anti-hyperglycemic activity of zinc plus cyclo (hispro) in genetically diabetic Goto-Kakizaki and aged rats. Exp Biol Med (Maywood) 2003; 228(11): 1338–1345

    CAS  Google Scholar 

  194. Yoshikawa Y, Ueda E, Sakurai H, Kojima Y. Anti-diabetes effect of Zn(II)/carnitine complex by oral administration. Chem Pharm Bull (Tokyo) 2003; 51(2): 230–231

    Article  CAS  Google Scholar 

  195. Adachi Y, Yoshida J, Kodera Y, Kato A, Yoshikawa Y, Kojima Y, Sakurai H. A new insulin-mimetic bis(allixinato)zinc(II) complex: structure-activity relationship of zinc(II) complexes. J Biol Inorg Chem 2004; 9(7): 885–893

    Article  PubMed  CAS  Google Scholar 

  196. Saha TK, Yoshikawa Y, Sakurai H. A [meso-tetrakis(4-sulfonatophenyl) porphyrinato]zinc(ii) complex as an oral therapeutic for the treatment of type 2 diabetic KKA(y) mice. ChemMedChem 2007; 2(2): 218–225

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu Cai.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miao, X., Sun, W., Fu, Y. et al. Zinc homeostasis in the metabolic syndrome and diabetes. Front. Med. 7, 31–52 (2013). https://doi.org/10.1007/s11684-013-0251-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11684-013-0251-9

Keywords

Navigation