Skip to main content

Advertisement

Log in

Cortical signatures of cognition and their relationship to Alzheimer’s disease

  • ADNI: Friday Harbor 2011 Workshop SPECIAL ISSUE
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Recent changes in diagnostic criteria for Alzheimer’s disease (AD) state that biomarkers can enhance certainty in a diagnosis of AD. In the present study, we combined cognitive function and brain morphology, a potential imaging biomarker, to predict conversion from mild cognitive impairment to AD. We identified four biomarkers, or cortical signatures of cognition (CSC), from regressions of cortical thickness on neuropsychological factors representing memory, executive function/processing speed, language, and visuospatial function among participants in the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Neuropsychological factor scores were created from a previously validated multidimensional factor structure of the neuropsychological battery in ADNI. Mean thickness of each CSC at the baseline study visit was used to evaluate risk of conversion to clinical AD among participants with mild cognitive impairment (MCI) and rate of decline on the Clinical Dementia Rating Scale Sum of Boxes (CDR-SB) score. Of 307 MCI participants, 119 converted to AD. For all domain-specific CSC, a one standard deviation thinner cortical thickness was associated with an approximately 50 % higher hazard of conversion and an increase of approximately 0.30 points annually on the CDR-SB. In combined models with a domain-specific CSC and neuropsychological factor score, both CSC and factor scores predicted conversion to AD and increasing clinical severity. The present study indicated that factor scores and CSCs for memory and language both significantly predicted risk of conversion to AD and accelerated deterioration in dementia severity. We conclude that predictive models are best when they utilize both neuropsychological measures and imaging biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahn, H. J., Seo, S. W., Chin, J., Suh, M. K., Lee, B. H., …, Na, D. L. (2011). The cortical neuroanatomy of neuropsychological deficits in mild cognitive impairment and Alzheimer’s disease: a surface-based morphometric analysis. Neuropsychologia, 49(14), 3931–3945.

  • Bakkour, A., Morris, J. C., & Dickerson, B. C. (2009). The cortical signature of prodromal AD: regional thinning predicts mild AD dementia. Neurology, 72(12), 1048–1055.

    Article  PubMed  Google Scholar 

  • Blennow, K., de Leon, M. J., & Zetterberg, H. (2006). Alzheimer’s disease. Lancet, 368, 387–403.

    Article  PubMed  CAS  Google Scholar 

  • Brink, T. L., Yesavage, J. A., Lum, O., Heersema, P., Adey, M. B., & Rose, T. L. (1982). Screening tests for geriatric depression. Clinical Gerontologist, 1, 37–44.

    Article  Google Scholar 

  • Buckner, R. L. (2004). Memory and executive function in aging and AD: multiple factors that cause decline and reserve factors that compensate. Neuron, 44, 195–208.

    Article  PubMed  CAS  Google Scholar 

  • Buckner, R. L., Snyder, A. Z., Shannon, B. J., LaRossa, G., Sachs, R., …, Mintun, M. A. (2005). Molecular, structural, and functional characterization of Alzheimer’s disease: evidence for a relationship between default activity, amyloid, and memory. Journal of Neuroscience, 25(34), 7709–7717.

  • Burggren, A. C., Renner, B., Jones, M., Donix, M., Suthana, N. A., …, Bookheimer, S. Y. (2011). Thickness in entorhinal and subicular cortex predicts episodic memory decline in mild cognitive impairment. International Journal of Alzheimer’s Disease, 2011, 956053.

  • Carlson, M. C., Xue, Q., Zhou, J., & Fried, L. P. (2008). Executive decline and dysfunction precedes declines in memory: the women’s health and aging study II. Journal of Gerontology: Series A: Biological, Social, and Medical Sciences, 64A, 110–117.

    Article  Google Scholar 

  • Clark, C. M., Davatzikos, C., Borthakur, A., Newberg, A., Leight, S., Lee, V. M., et al. (2008). Biomarkers for early detection of Alzheimer pathology. Neurosignals, 16, 11–18.

    Article  PubMed  CAS  Google Scholar 

  • Cox, D. R. (1972). Regression models and life-Tables (with discussion). Journal of the Royal Statistical Society, Series B, 34, 187–220.

    Google Scholar 

  • Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage, 9, 179–194.

    Article  PubMed  CAS  Google Scholar 

  • Davatzikos, C., Bhatt, P., Shaw, L. M., Batmanghelich, K. N., & Trojanowski, J. Q. (2011). Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification. Neurobiology of Aging, 32(12), 2322 e2319–2327.

    Google Scholar 

  • Destrieux, C., Fischl, B., Dale, A., & Halgren, E. (2010). Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. NeuroImage, 53(1), 1–15.

    Article  PubMed  Google Scholar 

  • Dickerson, B. C., Fenstermacher, E., Salat, D. H., Wolk, D. A., Maguire, R. P., …, Fischl, B. (2008). Detection of cortical thickness correlates of cognitive performance: reliability across MRI scan sessions, scanners, and field strengths. Neuroimage, 39, 10–18.

  • Dickerson, B. C., Bakkour, A., Salat, D. H., Feczko, E., Pacheco, J., …, Buckner, R. L. 2009. The cortical signature of Alzheimer's disease: regionally specific cortical thinning relates to symptom severity in very mild to mild AD dementia and is detecTable in asymptomatic amyloid-positive individuals. Cerebral Cortex, 19(3), 497–510 (Mar).

  • Dickerson, B. C., Stoub, T. R., Shah, R. C., Sperling, R. A., Killiany, R. J., …, Detoledo-Morrell, L. (2011). Alzheimer-signature MRI biomarker predicts AD dementia in cognitively normal adults. Neurology, 76(16), 1395–1402.

  • Fennema-Notestine, C., Hagler, D. J., Jr., McEvoy, L. K., Fleisher, A. S., Wu, E. H., Karow, D. S., et al. (2009). Structural MRI biomarkers for preclinical and mild Alzheimer’s disease. Human Brain Mapping, 30, 3238–3253.

    Article  PubMed  Google Scholar 

  • Fischl, B., & Dale, A. M. (2000). Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proceedings of the National Academy of Sciences of the United States of America, 97(20), 11050–11055.

    Article  PubMed  CAS  Google Scholar 

  • Fischl, B., Sereno, M. I., & Dale, A. M. (1999a). Cortical surface-based analysis. II: inflation, flattening, and a surface-based coordinate system. NeuroImage, 9(2), 195–207.

    Article  CAS  Google Scholar 

  • Fischl, B., Sereno, M. I., Tootell, R. B., & Dale, A. M. (1999b). High-resolution intersubject averaging and a coordinate system for the cortical surface. Human Brain Mapping, 8(4), 272–284.

    Article  CAS  Google Scholar 

  • Fjell, A. M., Amlien, I. K., Westlye, L. T., & Walhovd, K. B. (2009). Mini-mental state examination is sensitive to brain atrophy in Alzheimer's disease. Dementia and Geriatric Cognitive Disorders, 28(3), 252–258.

    Article  PubMed  CAS  Google Scholar 

  • Fjell, A. M., Walhovd, K. B. Amlien, I., Bjørnerud, A., Reinvang, I., …, Fladby, T. (2008). Morphometric changes in the episodic memory network and tau pathologic features correlate with memory performance in patients with mild cognitive impairment. American Journal of Neuroradiology, 29(6), 1183–1189.

  • Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). Mini-mental state A practical method for grading the mental state of patients for the clinician. Journal of Psychiatric Research, 12, 189–198.

    Article  PubMed  CAS  Google Scholar 

  • Fox, N. C., Crum, W. R., Scahill, R. I., Stevens, J. M., Janssen, J. C., & Rossor, M. N. (2001). Imaging of onset and progression of Alzheimer’s disease with voxel-compression mapping of serial magnetic resonance images. Lancet, 358, 201–205.

    Article  PubMed  CAS  Google Scholar 

  • Fox, N. C., Warrington, E. K., Freeborough, P. A., Hartikainen, P., Kennedy, A. M., …, Rossor, M. N. (1996). Presymptomatic hippocampal atrophy in Alzheimer’s disease: a longitudinal MRI study. Brain, 119, 2001–2007.

  • Good, C. D., Scahill, R. I., Fox, N. C., Ashburner, J., Friston, K. J., …, Frackowiak, R. S. (2002). Automatic differentiation of anatomical patterns in the human brain: validation with studies of degenerative dementias. Neuroimage, 17, 29–46.

  • Goodglass, H., & Kaplan, E. (1983). The assessment of aphasia and related disorders. Philadelphia: Lea & Febiger.

    Google Scholar 

  • Hill, D. (2010). Neuroimaging to assess safety and efficacy of AD therapies. Expert Opinion on Investigative Drugs, 19, 23–26.

    Article  CAS  Google Scholar 

  • Hinrichs, C., Singh, V., Xu, G., & Johnson, S. (2009). MKL for robust Multi-modality AD Classification. Medical Image Computing and Computer Assisted Intervention, 5762, 786–794.

    PubMed  Google Scholar 

  • Hinrichs, C., Singh, V., Xu, G., Johnson, S. C., & Initiative, Alzheimers Disease Neuroimaging. (2011). Predictive markers for AD in a multi-modality framework: an analysis of MCI progression in the ADNI population. NeuroImage, 55(2), 574–589.

    Article  PubMed  Google Scholar 

  • Hosmer, D. W., & Lemeshow, S. (1999). Applied survival analysis: Regression modeling of time to event data. New York: Wiley.

    Google Scholar 

  • Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indices in covariance structure analysis: conventional versus new alternatives. Structural Equation Modeling, 6, 1–55.

    Article  Google Scholar 

  • Jack, C. R. Jr., Knopman, D. S., Jagust, W. J., Shaw, L. M., Aisen, P. S., …, Trojanowski, J. Q. (2010). Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade. Lancet Neurology, 9, 119–128.

    Google Scholar 

  • Jack, C. R. Jr., Petersen, R. C., Xu, Y. C., O'Brien, P. C., Smith, G. E., …, Kokmen, E. (1999). Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. Neurology, 52(7), 1397–1403.

  • Johnson, J. K., Gross, A. L., Pa, J., McLaren, D. G., Park, L. Q., & Manly, J. J., for the Alzheimer’s Disease Neuroimaging Initiative (2012). Longitudinal change in neuropsychological performance using latent growth models: A study of mild cognitive impairment. Brain Imaging and Behavior.

  • Johnson, S. C., Schmitz, T. W., Moritz, C. H., Meyerand, M. E., Rowley, H. A., …, Alexander, G. E. (2006). Activation of brain regions vulnerable to Alzheimer's disease: the effect of mild cognitive impairment. Neurobiology of Aging, 27(11), 1604–1612.

  • Kaplan, E. L., & Meier, P. (1958). Nonparametric estimation from incomplete observations. Journal of the American Statistical Association, 53, 457–481.

    Article  Google Scholar 

  • Karow, D. S., McEvoy, L. K., Fennema-Notestine, C., Hagler, D. J., Jr., Jennings, R. G., Brewer, J. B., et al. (2010). Relative capability of MR imaging and FDG PET to depict changes associated with prodromal and early Alzheimer disease. Radiology, 256, 932–942.

    Article  PubMed  Google Scholar 

  • Kruggel, F., Turner, J., & Muftuler, L. T. (2010). Impact of scanner hardware and imaging protocol on image quality and compartment volume precision in the ADNI cohort. NeuroImage, 49, 2123–2133.

    Article  PubMed  Google Scholar 

  • Lezak, M. D., Howieson, D. B., & Loring, D. W. (2004). Neuropsychological assessment (p. 472). New York: Oxford University Press.

    Google Scholar 

  • Mayeux, R., & Sano, M. (1999). Treatment of Alzheimer’s disease. The New England Journal of Medicine, 341, 1670–1679.

    Article  PubMed  CAS  Google Scholar 

  • McDonald, C. R., McEvoy, L. K., Gharapetian, L., Fennema-Notestine, C., Hagler, D. J., Jr., Holland, D., et al. (2009). Regional rates of neocortical atrophy from normal aging to early Alzheimer disease. Neurology, 73, 457–465.

    Article  PubMed  Google Scholar 

  • McEvoy, L. K., Fennema-Notestine, C., Roddey, J. C., Hagler, D. J., Jr., Holland, D., Karow, D. S., et al. (2009). Alzheimer disease: quantitative structural neuroimaging for detection and prediction of clinical and structural changes in mild cognitive impairment. Radiology, 251, 195–205.

    Article  PubMed  Google Scholar 

  • McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., & Stadlan, E. M. (1984). Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA group under the auspices of Department of HHS Task Force on Alzheimer’s disease. Neurology, 34, 939–944.

    Article  PubMed  CAS  Google Scholar 

  • McKhann, G. M., Knopman, D. S., Chertkow, H., Hyman, B. T., Jack, C. R. Jr., …, Phelps, C. H. (2011). The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement, 7(3), 263–269.

    Google Scholar 

  • Misra, C., Fan, Y., & Davatzikos, C. (2009). Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to AD: results from ADNI. NeuroImage, 44(4), 1415–1422.

    Article  PubMed  Google Scholar 

  • Morris, J. C. (1993). The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology, 43(11), 2412–2414.

    Article  PubMed  CAS  Google Scholar 

  • Morris, J. C., Heyman, A., Mohs, R. C., Hughes, J. P., van Belle, G., …, the CERAD investigators (1989). The Consortium to Establish a Registry for Alzheimer's Disease (CERAD): Part 1. Clinical and neuropsychological assessment of Alzheimer's disease. Neurology, 39, 1159–1165.

  • Mueller, S. G., Weiner, M. W., Thal, L. J., Petersen, R. C., Jack, C. R., …, Beckett, L. (2005). Ways toward an early diagnosis in Alzheimer's disease: the Alzheimer's Disease Neuroimaging Initiative (ADNI). Alzheimers Dement, 1(1), 55–66.

  • Muthén, B. O. (1997). Latent variable modeling with longitudinal and multilevel data. In A. Raftery (Ed.), Sociological methodology (pp. 453–480). Boston: Blackwell.

    Google Scholar 

  • Muthén, B. O., & Curran, P. J. (1997). General longitudinalmodeling of individual differences in experimental designs: a latent variable framework for analysis and power estimation. Psychological Methods, 2, 371–402.

    Article  Google Scholar 

  • Muthén, L. K., & Muthén, B. O. (1998–2010). Mplus user's guide: Sixth Edition. Los Angeles, CA: Muthén & Muthén.

  • Park, L. Q., Gross, A. L., Pa, J., McLaren, D., Johnson, J. K., Mitchell, M., Manly, J. J., for the Alzheimer’s Disease Neuroimaging Initiative (2012). Identification of Invariant Neuropsychological Latent Factors in Alzheimer’s Disease from the ADNI Neuropsychological Battery. Brain Imaging and Behavior.

  • Prabhakaran, V., Nair, V. A., Austin, B. P., La, C., Gallagher, T. A., Wu, Y., McLaren, D. G., Xu, G., Turski, P., & Rowley, H. (2012). Current status and future perspectives of magnetic resonance high-field imaging: A summary. Neuroimaging Clinics of North America, in press.

  • Rami, L., Solé-Padullés, C., Fortea, J., Bosch, B., Lladó, A., Antonell, A., Olives, J., Castellví, M., Bartres-Faz, D., Sánchez-Valle, R., & Molinuevo, J. L. (2012). Applying the new research diagnostic criteria: MRI findings and neuropsychological correlations of prodromal AD. International Journal of Geriatric Psychiatry, 27, 127–134.

    Article  PubMed  Google Scholar 

  • Reitan, R. (1958). Validity of the trail making test as an indicator of organic brain damage. Perceptual and Motor Skills, 8, 271–276.

    Google Scholar 

  • Rey, A. (1964). L'examen clinique en psychologie. Paris: Presses Universitaires de France.

    Google Scholar 

  • Rosen, W. G., Mohs, R. C., & Davis, K. L. (1984). A new rating scale for Alzheimer's disease. The American Journal of Psychiatry, 141(11), 1356–1364.

    PubMed  CAS  Google Scholar 

  • Schott, J. M., Fox, N. C., Frost, C., Scahill, R. I., Janssen, J. C., …, Rossor, M. N. (2003). Assessing the onset of structural change in familial Alzheimer’s disease. Annals of Neurology, 53, 181–188.

  • Seeley, W. W., Crawford, R. K., Zhou, J., Miller, B. L., & Greicius, M. D. (2009). Neurodegenerative diseases target large-scale human brain networks. Neuron, 62(1), 42–52.

    Article  PubMed  CAS  Google Scholar 

  • Shaw, L. M. (2008). PENN biomarker core of the Alzheimer’s disease neuroimaging initiative. Neurosignals, 16, 19–23.

    Article  PubMed  CAS  Google Scholar 

  • Shen, L., Qi, Y., Kim, S., Nho, K., Wan, J., …, ADNI. (2010). Sparse bayesian learning for identifying imaging biomarkers in AD prediction. Medical Image Computing and Computer-Assisted Intervention , 13(Pt 3), 611–618.

  • Smith, C. D., Chebrolu, H., Wekstein, D. R., Schmitt, F. A., Jicha, G. A., …, Markesbery, W. R. (2007). Brain structural alterations before mild cognitive impairment. Neurology, 68, 1268–1273.

  • Sperling, R. A., Aisen, P. S., Beckett, L. A., Bennett, D. A., Craft, S., …, Phelps, C. H. (2011). Toward defining the preclinical stages of Alzheimer's disease: Recommendations from the National Institute on Aging and the Alzheimer's Association workgroup. Alzheimers Dement.

  • StataCorp. (2011). Stata statistical software: Release 12. College Station: StataCorp LP.

    Google Scholar 

  • Steiger, J. H. (1989). EZPATH: A supplementary module for SYSTAT and SYGRAPH. Evanston: Systat.

    Google Scholar 

  • Talairach, J., & Tournoux, P. (1988). Co-planar stereotaxic atlas of the human brain. New York: Thieme.

    Google Scholar 

  • Thompson, P. M., Mega, M. S., Woods, R. P., Zoumalan, C. I., Lindshield, C. J., …, Toga, A. W. (2001). Cortical change in Alzheimer’s disease detected with a diseasespecific population-based brain atlas. Cerebral Cortex, 11, 1–16.

  • Villemagne, V. L., & Rowe, C. C. (2011). Amyloid imaging. International Psychogeriatrics, 23(Suppl 2), S41–S49.

    Article  PubMed  Google Scholar 

  • Walhovd, K. B., Fjell, A. M., Dale, A. M., McEvoy, L. K., Brewer, J., Karow, D. S., et al. (2010). Multi-modal imaging predicts memory performance in normal aging and cognitive decline. Neurobiology of Aging, 31, 1107–1121.

    Article  PubMed  CAS  Google Scholar 

  • Wechsler, D. (1987). Wechsler memory scale-revised. San Antonio: Psychological Corporation.

    Google Scholar 

  • Weiner, M. W., Veitch, D. P., Aisen, P. S., Beckett, L. A., Cairns, N. J., …, Trojanowski, J. Q., Alzheimer’s Disease Neuroimaging Initiative (2012). The Alzheimer’s Disease Neuroimaging Initiative: A review of papers published since its inception. Alzheimer’s & Dementia, 8, S1–S68.

  • Williams, B. W., Mack, W., & Henderson, V. W. (1989). Boston naming test in Alzheimer’s disease. Neuropsychologia, 27(8), 1073–1079.

    Article  PubMed  CAS  Google Scholar 

  • Wolk, D. A., & Dickerson, B. C. (2011). Fractionating verbal episodic memory in Alzheimer's disease. NeuroImage, 54(2), 1530–1539.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge a conference grant from the National Institute on Aging (R13AG030995, PI: Mungas) that facilitated data analysis for this project. Dr. Gross was supported by an NIH Translational Research in Aging fellowship (T32AG023480-07, PI: Lipsitz) and the NIA (P01AG031720, PI: Inouye). Dr. McLaren was supported by NIA grant RO1 AG036694 (PI: Sperling) and K23 AG027171 (PI: Atri). Dr. Bruce Rosen (MGH-Harvard-MIT Martinos Center for Biomedical Imaging) provided guidance, space, and resources for this research. Dr. Johnson was supported by the NIA (R01 AG022538, PI: Johnson). Dr. Melrose was supported by a VA Career Development Award & UCLA Semel Scholar Award. Dr. Pa was supported by the NIA Career Development Award (K01 AG034175, PI: Pa). Dr. Park was supported by a grant from the National Institute of Aging (R01 AG031252 PI: Farias). Dr. Inouye holds the Milton and Shirley F. Levy Family Chair in Alzheimer’s Disease.

Data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: Abbott; Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Amorfix Life Sciences Ltd.; AstraZeneca; Bayer HealthCare; BioClinica, Inc.; Biogen Idec Inc.; Bristol-Myers Squibb Company; Eisai Inc.; Elan Pharmaceuticals Inc.; Eli Lilly and Company; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; GE Healthcare; Innogenetics, N.V.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Medpace, Inc.; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Servier; Synarc Inc.; and Takeda Pharmaceutical Company. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Disease Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of California, Los Angeles. This research was also supported by NIH grants P30 AG010129, K01 AG030514, and the Dana Foundation.

The contents do not represent the views of the Dept. of Veterans Affairs, the United States Government, or any other funding entities.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Alden L. Gross.

Additional information

Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.ucla.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.ucla.edu/wpcontent/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(DOC 141 kb)

Table S2

(DOC 42 kb)

Table S3

(DOC 53 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gross, A.L., Manly, J.J., Pa, J. et al. Cortical signatures of cognition and their relationship to Alzheimer’s disease. Brain Imaging and Behavior 6, 584–598 (2012). https://doi.org/10.1007/s11682-012-9180-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-012-9180-5

Keywords

Navigation