Skip to main content

Advertisement

Log in

Current status and new horizons in Monte Carlo simulation of X-ray CT scanners

  • Review Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

With the advent of powerful computers and parallel processing including Grid technology, the use of Monte Carlo (MC) techniques for radiation transport simulation has become the most popular method for modeling radiological imaging systems and particularly X-ray computed tomography (CT). The stochastic nature of involved processes such as X-ray photons generation, interaction with matter and detection makes MC the ideal tool for accurate modeling. MC calculations can be used to assess the impact of different physical design parameters on overall scanner performance, clinical image quality and absorbed dose assessment in CT examinations, which can be difficult or even impossible to estimate by experimental measurements and theoretical analysis. Simulations can also be used to develop and assess correction methods and reconstruction algorithms aiming at improving image quality and quantitative procedures. This paper focuses mainly on recent developments and future trends in X-ray CT MC modeling tools and their areas of application. An overview of existing programs and their useful features will be given together with recent developments in the design of computational anthropomorphic models of the human anatomy. It should be noted that due to limited space, the references contained herein are for illustrative purposes and are not inclusive; no implication that those chosen are better than others not mentioned is intended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kalender WA (2006) X-ray computed tomography. Phys Med Biol 51:R29–43

    Article  Google Scholar 

  2. Boone JM (2006) Multidetector CT: opportunities, challenges, and concerns associated with scanners with 64 or more detector rows. Radiology 241:334–337

    Article  Google Scholar 

  3. Hsieh J (2003) Analytical models for multi-slice helical CT performance parameters. Med Phys 30:169–178

    Article  MathSciNet  Google Scholar 

  4. Tofts PS, Gore JC (1980) Some sources of artefact in computed tomography. Phys Med Biol 25:117–127

    Article  Google Scholar 

  5. Colijn AP, Beekman FJ (2004) Accelerated simulation of cone beam X-ray scatter projections. IEEE Trans Med Imaging 23:584–590

    Article  Google Scholar 

  6. DeMarco JJ, Cagnon CH, Cody DD, Stevens DM, McCollough CH, Zankl M et al (2007) Estimating radiation doses from multidetector CT using Monte Carlo simulations: effects of different size voxelized patient models on magnitudes of organ and effective dose. Phys Med Biol 52:2583–2597

    Article  Google Scholar 

  7. Lee SC, Kim HK, Chun IK, Cho MH, Lee SY (2003) A flat-panel detector based micro-CT system: performance evaluation for small-animal imaging. Phys Med Biol 48:4173–4185

    Article  Google Scholar 

  8. Ning R, Tang X, Conover D (2004) X-ray scatter correction algorithm for cone beam CT imaging. Med Phys 31:1195–1202

    Article  Google Scholar 

  9. Siewerdsen JH, Jaffray DA (2000) Optimization of X-ray imaging geometry (with specific application to flat-panel cone-beam computed tomography). Med Phys 27:1903–1914

    Article  Google Scholar 

  10. Tu S-J, Shaw CC, Chen L (2006) Noise simulation in cone beam CT imaging with parallel computing. Phys Med Biol 51:1283–1297

    Article  Google Scholar 

  11. Colijn AP, Zbijewski W, Sasov A, Beekman FJ (2004) Experimental validation of a rapid Monte Carlo based micro-CT simulator. Phys Med Biol 49:4321–4333

    Article  Google Scholar 

  12. Ay M, Zaidi H (2005) Development and validation of MCNP4C-based Monte Carlo simulator for fan- and cone-beam X-ray CT. Phys Med Biol 50:4863–4885

    Article  Google Scholar 

  13. Kanamori H, Nakamori N, Inoue K, Takenaka E (1985) Effect of scattered X-ray on CT images. Phys Med Biol 30:239–249

    Article  Google Scholar 

  14. Malusek A, Seger MM, Sandborg M, Alm Carlsson G (2005) Effect of scatter on reconstructed image quality in cone beam computed tomography: evaluation of a scatter-reduction optimisation function. Radiat Prot Dosimetry 114:337–340

    Article  Google Scholar 

  15. Caon M, Bibbo G, Pattison J (1997) A comparison of radiation dose measured in CT dosimetry phantoms with calculations using EGS4 and voxel-based computational models. Phys Med Biol 42:219–29

    Article  Google Scholar 

  16. Khodaverdi M, Chatziioannou AF, Weber S, Ziemons K, Halling H, Pietrzyk U (2005) Investigation of different micro-CT scanner configurations by GEANT4 simulations. IEEE Trans Nucl Sci 52:188–192

    Article  Google Scholar 

  17. Andreo A (1991) Monte Carlo techniques in medical radiation physics. Phys Med Biol 36:861–920

    Article  Google Scholar 

  18. Zaidi H (1999) Relevance of accurate Monte Carlo modeling in nuclear medical imaging. Med Phys 26:574–608

    Article  Google Scholar 

  19. Rogers DWO (2006) Fifty years of Monte Carlo simulations for medical physics. Phys Med Biol 51:R287–R301

    Article  Google Scholar 

  20. De Man B, Nuyts J, Dupont P, Marchal G, Suetens P (1999) Metal streak artifacts in X-ray computed tomography: a simulation study. IEEE Trans Nucl Sci 46:691–696

    Article  Google Scholar 

  21. De Francesco D, Da Silva A. Multislice spiral CT simulator for dynamic cardiopulmonary studies. Medical imaging 2002: Physiology and function from multidimensional images, San Diego, 2002, 4683:305–316

  22. DeMarco JJ, Cagnon CH, Cody DD, Stevens DM, McCollough CH, O’Daniel J et al (2005) A Monte Carlo based method to estimate radiation dose from multidetector CT (MDCT): cylindrical and anthropomorphic phantoms. Phys Med Biol 50:3989–4004

    Article  Google Scholar 

  23. Boone JM, Buonocore MH, Cooper VN. (2000) Monte Carlo validation in diagnostic radiological imaging. Med Phys 27:1294–1304

    Article  Google Scholar 

  24. Giersch J, Weidemann A, Anton G. (2003) ROSI-an object-oriented and parallel-computing Monte Carlo simulation for X-ray imaging. Nucl Instr Meth A 509:151–156

    Article  Google Scholar 

  25. Winslow M, Xu XG, Yazici B. (2005) Development of a simulator for radiographic image optimization. Comput Methods Programs Biomed 78:179–190

    Article  Google Scholar 

  26. Ay M, Shahriari M, Sarkar S, Adib M, Zaidi H. (2004) Monte Carlo simulation of X-ray spectra in diagnostic radiology and mammography using MCNP4C. Phys Med Biol 49:4897–4917

    Article  Google Scholar 

  27. Tanner RJ, Chartier J-L, Siebert BRL, Agosteo S, Grosswendt B, Gualdrini G et al (2004) Intercomparison on the usage of computational codes in radiation dosimetry. Radiat Prot Dosimetry 110:769–780

    Article  Google Scholar 

  28. Wiest PW, Locken JA, Heintz PH, Mettler FA Jr (2002) CT scanning: a major source of radiation exposure. Semin Ultrasound CT MR 23:402–410

    Article  Google Scholar 

  29. Salvado M, Lopez M, Morant JJ, Calzado A. (2005) Monte Carlo calculation of radiation dose in CT examinations using phantom and patient tomographic models. Radiat Prot Dosimetry 114:364–368

    Article  Google Scholar 

  30. Staton RJ, Lee C, Lee C, Williams MD, Hintenlang DE, Arreola MM, et al (2006) Organ and effective doses in newborn patients during helical multislice computed tomography examination. Phys Med Biol 51:5151–5166

    Article  Google Scholar 

  31. Tzedakis A, Perisinakis K, Raissaki M, Damilakis J. (2006) The effect of z overscanning on radiation burden of pediatric patients undergoing head CT with multidetector scanners: a Monte Carlo study. Med Phys 33:2472–2478

    Article  Google Scholar 

  32. Theocharopoulos N, Damilakis J, Perisinakis K, Tzedakis A, Karantanas A, Gourtsoyiannis N (2006) Estimation of effective doses to adult and pediatric patients from multislice computed tomography: a method based on energy imparted. Med Phys 33:3846–3856

    Article  Google Scholar 

  33. Taschereau R, Chow PL, Chatziioannou AF (2006) Monte Carlo simulations of dose from microCT imaging procedures in a realistic mouse phantom. Med Phys 33:216–224

    Article  Google Scholar 

  34. Mazonakis M, Tzedakis A, Damilakis J, Gourtsoyiannis N (2007) Thyroid dose from common head and neck CT examinations in children: is there an excess risk for thyroid cancer induction? Eur Radiol 17:1352–1357

    Article  Google Scholar 

  35. LeHeron JC. CTDOSE (1993) A computer program to enable the calculation of organ dose, dose indices for CT examinations. Ministry of Health, National Radiation Laboratory, Christchurch

  36. Jones DG, Shrimpton PC (1991) Survey of CT practice in the UK. Part 3: Normalised organ doses calculated using Monte Carlo techniques. NRPB-R250, Chilton

  37. ImPACT. ImPACT: CT patient dosimetry calculator. London, 2006. Available at http://www.impactscan.org/ctdosimetry.htm

  38. Ay M, Shahriari M, Sarkar S, Sardari D, Zaidi H (2005) Assessment of different computational models for generation of X-ray spectra in diagnostic radiology and mammography. Med Phys 32:1660–1675

    Article  Google Scholar 

  39. Chan HP, Doi K (1985) Physical characteristics of scattered radiation in diagnostic radiology: Monte Carlo simulation studies. Med Phys 12:152–165

    Article  Google Scholar 

  40. Cheng CW, Taylor KW, Holloway AF (1995) The spectrum and angular distribution of X-rays scattered from a water phantom. Med Phys 22:1235–1245

    Article  Google Scholar 

  41. Endo M, Tsunoo T, Nakamori N, Yoshida K (2001) Effect of scatter radiation on image noise in cone beam CT. Med Phys 28:469–474

    Article  Google Scholar 

  42. Endo M, Mori S, Tsunoo T, Miyazaki H (2006) Magnitude and effects of X-ray scatter in a 256-slice CT scanner. Med Phys 33:3359–3368

    Article  Google Scholar 

  43. Zbijewski W, Beekman FJ (2006) Efficient Monte Carlo-based scatter artifact reduction in cone-beam micro-CT. IEEE Trans Med Imaging 25:817–827

    Article  Google Scholar 

  44. Ay M, Zaidi H (2006) Assessment of errors caused by X-ray scatter and use of contrast medium when using CT-based attenuation correction in PET. Eur J Nucl Med Mol Imaging 33:1301–1313

    Article  Google Scholar 

  45. Schmidt B, Kalender WA (2003) Advanced method for calculating the scatter signal contribution in CT detectors by the Monte Carlo method. Z Med Phys 13:30–39

    Google Scholar 

  46. Kyriakou Y, Riedel T, Kalender WA (2006) Combining deterministic and Monte Carlo calculations for fast estimation of scatter intensities in CT. Phys Med Biol 51:4567–4586

    Article  Google Scholar 

  47. Zaidi H, Xu XG (2007) Computational anthropomorphic models of the human anatomy: the path to realistic Monte Carlo modeling in medical imaging. Annu Rev Biomed Eng 9: doi:10.1146/annurev.bioeng.9.060906.151934

  48. Goertzen AL, Beekman FJ, Cherry SR (2002) Effect of phantom voxelization in CT simulations. Med Phys 29:492–498

    Article  Google Scholar 

  49. Snyder W, Ford MR, Warner G (1978) Estimates of specific absorbed fractions for photon sources uniformly distributed in various organs of a heterogeneous phantom. Pamphlet No. 5, revised. New York: Society of Nuclear Medicine

  50. Cristy M, Eckerman KF (1987) Specific absorbed fractions of energy at various ages from internal photon sources. I Methods, II one year old, III five year old, IV ten year old, V fifteen year old male and adult female, VI new-born and VII adult male. ORNL/TM 8381/V1-V7, Oak Ridge National Laboratory, Oak Ridge

  51. Shepp LA, Logan BF (1974) The Fourier reconstruction of a head phantom. IEEE Trans Nucl Sci 21:21–43

    Article  Google Scholar 

  52. Institute of Medical Physics, The FORBILD phantom database. 2006. Available at http://www.imp.uni-erlangen.de/phantoms/

  53. Peter J, Gilland DR, Jaszczak RJ, Coleman RE. (1999) Four-dimensional superquadric-based cardiac phantom for Monte Carlo simulation of radiological imaging systems. IEEE Trans Nucl Sci 46:2211–2217

    Article  Google Scholar 

  54. Segars WP (2001) Development, application of the new dynamic NURBS-based cardiac-torso (NCAT) phantom [Ph.D Thesis]. University of North Carolina, Chapel Hill

  55. Zhu J, Zhao S, Ye Y, Wang G (2005) Computed tomography simulation with superquadrics. Med Phys 32:3136–3143

    Article  Google Scholar 

  56. LaCroix K (1997) Evaluation of an attenuation compensation method with respect to defect detection in Tc-99m-sestamibi myocardial SPECT [Ph.D Thesis]. University of North Carolina, Chapel Hill

  57. Segars WP, Tsui BM, Frey EC, Johnson GA, Berr SS (2004) Development of a 4D digital mouse phantom for molecular imaging research. Mol Imaging Biol 6:149–159

    Article  Google Scholar 

  58. Zubal IG, Harrell CR, Smith EO, Rattner Z, Gindi G, Hoffer BP (1994) Computerized 3-dimensional segmented human anatomy. Med Phys 21:299–302

    Article  Google Scholar 

  59. Xu XG, Chao TC, Bozkurt A (2000) VIP-Man: an image-based whole-body adult male model constructed from color photographs of the Visible Human Project for multi-particle Monte Carlo calculations. Health Phys 78:476–486

    Article  Google Scholar 

  60. Chao T-c, Xu XG (2004) S-values calculated from a tomographic head/brain model for brain imaging. Phys Med Biol 49:4971–4984

    Article  Google Scholar 

  61. Petoussi-Henss N, Zankl M, Fill U, Regulla D (2002) The GSF family of voxel phantoms. Phys Med Biol 47:89–106

    Article  Google Scholar 

  62. Park JS, Chung MS, Hwang SB, Lee YS, Har DH, Park HS (2005) Visible Korean human: improved serially sectioned images of the entire body. IEEE Trans Med Imaging 24:352–360

    Article  Google Scholar 

  63. Nipper JC, Williams JL, Bolch WE (2002) Creation of two tomographic voxel models of paediatric patients in the first year of life. Phys Med Biol 47:3143–3164

    Article  Google Scholar 

  64. Shi CY, Xu XG (2004) Development of a 30-week-pregnant female tomographic model from computed tomography (CT) images for Monte Carlo organ dose calculations. Med Phys 31:2491–2497

    Article  Google Scholar 

  65. Zaidi H, Labbé C, Morel C (1998) Implementation of an environment for Monte Carlo simulation of fully 3D positron tomography on a high-performance parallel platform. Parallel Comput 24:1523–1536

    Article  Google Scholar 

  66. Maigne L, Hill D, Calvat P, Breton V, Reuillon R, Lazaro D et al (2004) Parallelization of Monte Carlo simulations and submission to a Grid environment. Parallel Proc Lett 14:177–196

    Article  Google Scholar 

  67. El Naqa I, Kawrakow I, Fippel M, Siebers JV, Lindsay PE, Wickerhauser MV et al (2005) A comparison of Monte Carlo dose calculation denoising techniques. Phys Med Biol 50:909–922

    Article  Google Scholar 

  68. Hughes RE, An KN (1997) Monte Carlo simulation of a planar shoulder model. Med Biol Eng Comput 35:544–548

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Swiss National Science Foundation under grant SNSF 3100A0–116547.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Habib Zaidi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaidi, H., Ay, M.R. Current status and new horizons in Monte Carlo simulation of X-ray CT scanners. Med Bio Eng Comput 45, 809–817 (2007). https://doi.org/10.1007/s11517-007-0207-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-007-0207-9

Keywords

Navigation