Skip to main content

Advertisement

Log in

[11C]DAC-PET for Noninvasively Monitoring Neuroinflammation and Immunosuppressive Therapy Efficacy in Rat Experimental Autoimmune Encephalomyelitis Model

  • ORIGINAL ARTICLE
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Neuroimaging measures have potential for monitoring neuroinflammation to guide treatment before the occurrence of significant functional impairment or irreversible neuronal damage in multiple sclerosis (MS). N-Benzyl-N-methyl-2-(7-[11C]methyl-8-oxo-2-phenyl-7,8-dihydro-9H-purin-9-yl) acetamide ([11C]DAC), a new developed positron emission tomography (PET) probe for translocator protein 18 kDa (TSPO), has been adopted to evaluate the neuroinflammation and treatment effects of experimental autoimmune encephalomyelitis (EAE), an animal model of MS. [11C]DAC-PET enabled visualization of neuroinflammation lesion of EAE by tracing TSPO expression in the spinal cords; the maximal uptake value reached in day 11 and 20 EAE rats with profound inflammatory cell infiltration compared with control, day 0 and 60 EAE rats. Biodistribution studies and in vitro autoradiography confirmed these in vivo imaging results. Doubling immunohistochemical studies showed the infiltration and expansion of CD4+ T cells and CD11b+ microglia; CD68+ macrophages were responsible for the increased TSPO levels visualized by [11C]DAC-PET. Furthermore, mRNA level analysis of the cytokines by quantitative reverse-transcription polymerase chain reaction (qRT-PCR) revealed that TSPO+/CD4 T cells, TSPO+ microglia and TSPO+ macrophages in EAE spinal cords were activated and secreted multiple proinflammation cytokines to mediate inflammation lesions of EAE. EAE rats treated with an immunosuppressive agent: 2-amino-2-[2-(4-octylphenyl)ethyl] propane-1,3-diolhydrochloride (FTY720), which exhibited an absence of inflammatory cell infiltrates, displaying a faint radioactive signal compared with the high accumulation of untreated EAE rats. These results indicated that [11C] DAC-PET imaging is a sensitive tool for noninvasively monitoring the neuroinflammation response and evaluating therapeutic interventions in EAE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agnello D, Carvelli L, Muzio V, Villa P, Bottazzi B, Polentarutti N, Mennini T, Mantovani A, Ghezzi P (2000) Increased peripheral benzodiazepine binding sites and pentraxin 3 expression in the spinal cord during EAE: relation to inflammatory cytokines and modulation by dexamethasone and rolipram. J Neuroimmunol 109:105–111

    Article  PubMed  CAS  Google Scholar 

  • Banati RB, Newcombe J, Gunn RN, Cagnin A, Turkheimer F, Heppner F, Price G, Wegner F, Giovannoni G, Miller DH, Perkin GD, Smith T, Hewson AK, Bydder G, Kreutzberg GW, Jones T, Cuzner ML, Myers R (2000) The peripheral benzodiazepine binding site in the brain in multiple sclerosis: quantitative in vivo imaging of microglia as a measure of disease activity. Brain 123(Pt 11):2321–2337

    Article  PubMed  Google Scholar 

  • Bartels AL, Leenders KL (2007) Neuroinflammation in the pathophysiology of Parkinson’s disease: evidence from animal models to human in vivo studies with [11C]-PK11195 PET. Mov Disord 22:1852–1856

    Article  PubMed  Google Scholar 

  • Cagnin A, Brooks DJ, Kennedy AM, Gunn RN, Myers R, Turkheimer FE, Jones T, Banati RB (2001) In-vivo measurement of activated microglia in dementia. Lancet 358:461–467

    Article  PubMed  CAS  Google Scholar 

  • Chauveau F, Boutin H, Van Camp N, Dolle F, Tavitian B (2008) Nuclear imaging of neuroinflammation: a comprehensive review of [11C]PK11195 challengers. Eur J Nucl Med Mol Imaging 35:2304–2319

    Article  PubMed  Google Scholar 

  • Chauveau F, Van Camp N, Dolle F, Kuhnast B, Hinnen F, Damont A, Boutin H, James M, Kassiou M, Tavitian B (2009) Comparative evaluation of the translocator protein radioligands 11C-DPA-713, 18F-DPA-714, and 11C-PK11195 in a rat model of acute neuroinflammation. J Nucl Med 50:468–476

    Article  PubMed  CAS  Google Scholar 

  • Chen MK, Guilarte TR (2008) Translocator protein 18 kDa (TSPO): molecular sensor of brain injury and repair. Pharmacol Ther 118:1–17

    Article  PubMed  CAS  Google Scholar 

  • Chen MK, Baidoo K, Verina T, Guilarte TR (2004) Peripheral benzodiazepine receptor imaging in CNS demyelination: functional implications of anatomical and cellular localization. Brain 127:1379–1392

    Article  PubMed  Google Scholar 

  • Chen J, Xie L, Toyama S, Hunig T, Takahara S, Li XK, Zhong L (2011) The effects of Foxp3-expressing regulatory T cells expanded with CD28 superagonist antibody in DSS-induced mice colitis. Int Immunopharmacol 11:610–617

    Article  PubMed  CAS  Google Scholar 

  • Choi HB, Khoo C, Ryu JK, van Breemen E, Kim SU, McLarnon JG (2002) Inhibition of lipopolysaccharide-induced cyclooxygenase-2, tumor necrosis factor-alpha and [Ca2+]i responses in human microglia by the peripheral benzodiazepine receptor ligand PK11195. J Neurochem 83:546–555

    Article  PubMed  CAS  Google Scholar 

  • Chun J, Hartung HP (2010) Mechanism of action of oral fingolimod (FTY720) in multiple sclerosis. Clin Neuropharmacol 33:91–101

    Article  PubMed  CAS  Google Scholar 

  • Debruyne JC, Versijpt J, Van Laere KJ, De Vos F, Keppens J, Strijckmans K, Achten E, Slegers G, Dierckx RA, Korf J, De Reuck JL (2003) PET visualization of microglia in multiple sclerosis patients using [11C]PK11195. Eur J Neurol 10:257–264

    Article  PubMed  CAS  Google Scholar 

  • Disanto G, Berlanga AJ, Handel AE, Para AE, Burrell AM, Fries A, Handunnetthi L, De Luca GC, Morahan JM (2010) Heterogeneity in multiple sclerosis: scratching the surface of a complex disease. Autoimmune Dis 2011:932351

    PubMed  Google Scholar 

  • Dong C (2008) TH17 cells in development: an updated view of their molecular identity and genetic programming. Nat Rev Immunol 8:337–348

    Article  PubMed  CAS  Google Scholar 

  • El-behi M, Rostami A, Ciric B (2010) Current views on the roles of Th1 and Th17 cells in experimental autoimmune encephalomyelitis. J Neuroimmune Pharmacol 5:189–197

    Article  PubMed  Google Scholar 

  • Folkersma H, Boellaard R, Vandertop WP, Kloet RW, Lubberink M, Lammertsma AA, van Berckel BN (2009) Reference tissue models and blood-brain barrier disruption: lessons from (R)-[11C]PK11195 in traumatic brain injury. J Nucl Med 50:1975–1979

    Article  PubMed  Google Scholar 

  • Fox RJ, Cohen JA (2001) Multiple sclerosis: the importance of early recognition and treatment. Cleve Clin J Med 68:157–171

    PubMed  CAS  Google Scholar 

  • Fujimura Y, Ikoma Y, Yasuno F, Suhara T, Ota M, Matsumoto R, Nozaki S, Takano A, Kosaka J, Zhang MR, Nakao R, Suzuki K, Kato N, Ito H (2006) Quantitative analyses of 18F-FEDAA1106 binding to peripheral benzodiazepine receptors in living human brain. J Nucl Med 47:43–50

    PubMed  CAS  Google Scholar 

  • Fujino M, Funeshima N, Kitazawa Y, Kimura H, Amemiya H, Suzuki S, Li XK (2003) Amelioration of experimental autoimmune encephalomyelitis in Lewis rats by FTY720 treatment. J Pharmacol Exp Ther 305:70–77

    Article  PubMed  CAS  Google Scholar 

  • Gerhard A, Pavese N, Hotton G, Turkheimer F, Es M, Hammers A, Eggert K, Oertel W, Banati RB, Brooks DJ (2006) In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson’s disease. Neurobiol Dis 21:404–412

    Article  PubMed  CAS  Google Scholar 

  • Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140:918–934

    Article  PubMed  CAS  Google Scholar 

  • Goertsches R, Serrano-Fernandez P, Moller S, Koczan D, Zettl UK (2006) Multiple sclerosis therapy monitoring based on gene expression. Curr Pharm Des 12:3761–3779

    Article  PubMed  CAS  Google Scholar 

  • Gold R, Linington C, Lassmann H (2006) Understanding pathogenesis and therapy of multiple sclerosis via animal models: 70 years of merits and culprits in experimental autoimmune encephalomyelitis research. Brain 129:1953–1971

    Article  PubMed  Google Scholar 

  • Hartung HP (2005) Early treatment and dose optimisation BENEFIT and BEYOND. J Neurol 252(Suppl 3):iii44–iii50

    Article  PubMed  Google Scholar 

  • Heesen C, Solari A, Giordano A, Kasper J, Kopke S (2010) Decisions on multiple sclerosis immunotherapy: New treatment complexities urge patient engagement. J Neurol Sci: [Epub ahead of print]

  • James ML, Selleri S, Kassiou M (2006) Development of ligands for the peripheral benzodiazepine receptor. Curr Med Chem 13:1991–2001

    Article  PubMed  CAS  Google Scholar 

  • Ji B, Maeda J, Sawada M, Ono M, Okauchi T, Inaji M, Zhang MR, Suzuki K, Ando K, Staufenbiel M, Trojanowski JQ, Lee VM, Higuchi M, Suhara T (2008) Imaging of peripheral benzodiazepine receptor expression as biomarkers of detrimental versus beneficial glial responses in mouse models of Alzheimer’s and other CNS pathologies. J Neurosci 28:12255–12267

    Article  PubMed  CAS  Google Scholar 

  • Kalkers NF, Vrenken H, Uitdehaag BM, Polman CH, Barkhof F (2002) Brain atrophy in multiple sclerosis: impact of lesions and of damage of whole brain tissue. Mult Scler 8:410–414

    Article  PubMed  CAS  Google Scholar 

  • Martin R, Sturzebecher CS, McFarland HF (2001) Immunotherapy of multiple sclerosis: where are we? Where should we go? Nat Immunol 2:785–788

    Article  PubMed  CAS  Google Scholar 

  • McFarland HF, Martin R (2007) Multiple sclerosis: a complicated picture of autoimmunity. Nat Immunol 8:913–919

    Article  PubMed  CAS  Google Scholar 

  • Ouyang W, Kolls JK, Zheng Y (2008) The biological functions of T helper 17 cell effector cytokines in inflammation. Immunity 28:454–467

    Article  PubMed  CAS  Google Scholar 

  • Papadopoulos V, Baraldi M, Guilarte TR, Knudsen TB, Lacapere JJ, Lindemann P, Norenberg MD, Nutt D, Weizman A, Zhang MR, Gavish M (2006) Translocator protein (18 kDa): new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function. Trends Pharmacol Sci 27:402–409

    Article  PubMed  CAS  Google Scholar 

  • Papadopoulos D, Rundle J, Patel R, Marshall I, Stretton J, Eaton R, Richardson JC, Gonzalez MI, Philpott KL, Reynolds R (2010) FTY720 ameliorates MOG-induced experimental autoimmune encephalomyelitis by suppressing both cellular and humoral immune responses. J Neurosci Res 88:346–359

    Article  PubMed  CAS  Google Scholar 

  • Pavese N, Gerhard A, Tai YF, Ho AK, Turkheimer F, Barker RA, Brooks DJ, Piccini P (2006) Microglial activation correlates with severity in Huntington disease: a clinical and PET study. Neurology 66:1638–1643

    Article  PubMed  CAS  Google Scholar 

  • Quintana FJ, Basso AS, Iglesias AH, Korn T, Farez MF, Bettelli E, Caccamo M, Oukka M, Weiner HL (2008) Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor. Nature 453:65–71

    Article  PubMed  CAS  Google Scholar 

  • Rey C, Mauduit C, Naureils O, Benahmed M, Louisot P, Gasnier F (2000) Up-regulation of mitochondrial peripheral benzodiazepine receptor expression by tumor necrosis factor alpha in testicular leydig cells. Possible involvement in cell survival. Biochem Pharmacol 60:1639–1646

    Article  PubMed  CAS  Google Scholar 

  • Rivera VM (2001) Pharmacologic treatment of multiple sclerosis. Rev Neurol 32:285–288

    PubMed  CAS  Google Scholar 

  • Steinman L (2001) Multiple sclerosis: a two-stage disease. Nat Immunol 2:762–764

    Article  PubMed  CAS  Google Scholar 

  • Stromnes IM, Cerretti LM, Liggitt D, Harris RA, Goverman JM (2008) Differential regulation of central nervous system autoimmunity by T(H)1 and T(H)17 cells. Nat Med 14:337–342

    Article  PubMed  CAS  Google Scholar 

  • Tai YF, Pavese N, Gerhard A, Tabrizi SJ, Barker RA, Brooks DJ, Piccini P (2007) Microglial activation in presymptomatic Huntington’s disease gene carriers. Brain 130:1759–1766

    Article  PubMed  Google Scholar 

  • Thiel A, Radlinska BA, Paquette C, Sidel M, Soucy JP, Schirrmacher R, Minuk J (2010) The temporal dynamics of poststroke neuroinflammation: a longitudinal diffusion tensor imaging-guided PET study with 11C-PK11195 in acute subcortical stroke. J Nucl Med 51:1404–1412

    Article  PubMed  CAS  Google Scholar 

  • Toyama H, Hatano K, Suzuki H, Ichise M, Momosaki S, Kudo G, Ito F, Kato T, Yamaguchi H, Katada K, Sawada M, Ito K (2008) In vivo imaging of microglial activation using a peripheral benzodiazepine receptor ligand: [11C]PK-11195 and animal PET following ethanol injury in rat striatum. Ann Nucl Med 22:417–424

    Article  PubMed  Google Scholar 

  • Trincavelli ML, Marselli L, Falleni A, Gremigni V, Ragge E, Dotta F, Santangelo C, Marchetti P, Lucacchini A, Martini C (2002) Upregulation of mitochondrial peripheral benzodiazepine receptor expression by cytokine-induced damage of human pancreatic islets. J Cell Biochem 84:636–644

    Article  PubMed  Google Scholar 

  • van der Laken CJ, Elzinga EH, Kropholler MA, Molthoff CF, van der Heijden JW, Maruyama K, Boellaard R, Dijkmans BA, Lammertsma AA, Voskuyl AE (2008) Noninvasive imaging of macrophages in rheumatoid synovitis using 11C-(R)-PK11195 and positron emission tomography. Arthritis Rheum 58:3350–3355

    Article  PubMed  Google Scholar 

  • Venneti S, Lopresti BJ, Wiley CA (2006) The peripheral benzodiazepine receptor (Translocator protein 18 kDa) in microglia: from pathology to imaging. Prog Neurobiol 80:308–322

    Article  PubMed  CAS  Google Scholar 

  • Venneti S, Lopresti BJ, Wang G, Slagel SL, Mason NS, Mathis CA, Fischer ML, Larsen NJ, Mortimer AD, Hastings TG, Smith AD, Zigmond MJ, Suhara T, Higuchi M, Wiley CA (2007) A comparison of the high-affinity peripheral benzodiazepine receptor ligands DAA1106 and (R)-PK11195 in rat models of neuroinflammation: implications for PET imaging of microglial activation. J Neurochem 102:2118–2131

    Article  PubMed  CAS  Google Scholar 

  • Wilms H, Claasen J, Rohl C, Sievers J, Deuschl G, Lucius R (2003) Involvement of benzodiazepine receptors in neuroinflammatory and neurodegenerative diseases: evidence from activated microglial cells in vitro. Neurobiol Dis 14:417–424

    Article  PubMed  CAS  Google Scholar 

  • Xie L, Li XK, Funeshima-Fuji N, Kimura H, Matsumoto Y, Isaka Y, Takahara S (2009) Amelioration of experimental autoimmune encephalomyelitis by curcumin treatment through inhibition of IL-17 production. Int Immunopharmacol 9:575–581

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki T, Koike S, Hatori A, Yanamoto K, Kawamura K, Yui J, Kumata K, Ando K, Zhang MR (2010) Imaging of peripheral-type benzodiazepine receptor in tumor: carbon ion irradiation reduced the uptake of a positron emission tomography ligand [11C]DAC in tumor. J Radiat Res (Tokyo) 51:57–65

    Article  CAS  Google Scholar 

  • Yanamoto K, Yamasaki T, Kumata K, Yui J, Odawara C, Kawamura K, Hatori A, Inoue O, Yamaguchi M, Suzuki K, Zhang MR (2009) Evaluation of N-benzyl-N-[11C]methyl-2-(7-methyl-8-oxo-2-phenyl-7,8-dihydro-9H-purin-9-yl)acetamide ([11C]DAC) as a novel translocator protein (18 kDa) radioligand in kainic acid-lesioned rat. Synapse 63:961–971

    Article  PubMed  CAS  Google Scholar 

  • Yanamoto K, Kumata K, Fujinaga M, Nengaki N, Takei M, Wakizaka H, Hosoi R, Momosaki S, Yamasaki T, Yui J, Kawamura K, Hatori A, Inoue O, Zhang MR (2010) In vivo imaging and quantitative analysis of TSPO in rat peripheral tissues using small-animal PET with [18F]FEDAC. Nucl Med Biol 37:853–860

    Article  PubMed  CAS  Google Scholar 

  • Yui J, Hatori A, Yanamoto K, Takei M, Nengaki N, Kumata K, Kawamura K, Yamasaki T, Suzuki K, Zhang MR (2010) Imaging of the translocator protein (18 kDa) in rat brain after ischemia using [11C]DAC with ultra-high specific activity. Synapse 64:488–493

    Article  PubMed  CAS  Google Scholar 

  • Yui J, Hatori A, Kawamura K, Yanamoto K, Yamasaki T, Ogawa M, Yoshida Y, Kumata K, Fujinaga M, Nengaki N, Fukumura T, Suzuki K, Zhang MR (2011) Visualization of early infarction in rat brain after ischemia using a translocator protein (18 kDa) PET ligand [11C]DAC with ultra-high specific activity. Neuroimage 54:123–130

    Article  PubMed  CAS  Google Scholar 

  • Zhang MR, Kumata K, Maeda J, Haradahira T, Noguchi J, Suhara T, Halldin C, Suzuki K (2007a) N-(5-Fluoro-2-phenoxyphenyl)-N-(2-[(131)I]iodo-5-me thoxybenzyl)acetamide: a potent iodinated radioligand for the peripheral-type benzodiazepine receptor in brain. J Med Chem 50:848–855

    Article  PubMed  CAS  Google Scholar 

  • Zhang MR, Kumata K, Maeda J, Yanamoto K, Hatori A, Okada M, Higuchi M, Obayashi S, Suhara T, Suzuki K (2007b) 11C-AC-5216: a novel PET ligand for peripheral benzodiazepine receptors in the primate brain. J Nucl Med 48:1853–1861

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. M. Higuchi for the gift of antibody NP155 and Dr. H. Kimura for his critical comments and useful suggestions. We also thank the staff of the National Institute of Radiological Sciences for support with the cyclotron operation, radioisotope production, radiosynthesis, and animal experiments. This study was supported by research grants from the Ministry of Education, Culture, Sports, Science and Technology of Japan (Grants-in-Aid 20390349, 21659310), and in part by the Japan China Medical Association.

Conflicts of interest

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ming-Rong Zhang or Xiao-Kang Li.

Additional information

Lin Xie, Tomoteru Yamazaki and Naotsugu Ichimaru contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, L., Yamasaki, T., Ichimaru, N. et al. [11C]DAC-PET for Noninvasively Monitoring Neuroinflammation and Immunosuppressive Therapy Efficacy in Rat Experimental Autoimmune Encephalomyelitis Model. J Neuroimmune Pharmacol 7, 231–242 (2012). https://doi.org/10.1007/s11481-011-9322-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-011-9322-3

Keywords

Navigation