Skip to main content

Advertisement

Log in

Non-invasive PET Imaging of PARP1 Expression in Glioblastoma Models

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

The current study presents [18F]PARPi as imaging agent for PARP1 expression.

Procedures

[18F]PARPi was generated by conjugating a 2H-phthalazin-1-one scaffold to 4-[18F]fluorobenzoic acid. Biochemical assays, optical in vivo competition, biodistribution analysis, positron emission tomography (PET)/X-ray computed tomography, and PET/magnetic resonance imaging studies were performed in subcutaneous and orthotopic mouse models of glioblastoma.

Results

[18F]PARPi shows suitable pharmacokinetic properties for brain tumor imaging (IC50 = 2.8 ± 1.1 nM; logPCHI = 2.15 ± 0.41; plasma-free fraction = 63.9 ± 12.6 %) and accumulates selectively in orthotopic brain tumor tissue. Tracer accumulation in subcutaneous brain tumors was 1.82 ± 0.21 %ID/g, whereas in healthy brain, the uptake was only 0.04 ± 0.01 %ID/g.

Conclusions

[18F]PARPi is a selective PARP1 imaging agent that can be used to visualize glioblastoma in xenograft and orthotopic mouse models with high precision and good signal/noise ratios. It offers new opportunities to non-invasively image tumor growth and monitor interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rouleau M, Patel A, Hendzel MJ et al (2010) PARP inhibition: PARP1 and beyond. Nat Rev Cancer 10:293–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gradwohl G, Menissier de Murcia JM et al (1990) The second zinc-finger domain of poly(ADP-ribose) polymerase determines specificity for single-stranded breaks in DNA. Proc Natl Acad Sci U S A 87:2990–2994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hassa PO, Hottiger MO (2008) The diverse biological roles of mammalian PARPS, a small but powerful family of poly-ADP-ribose polymerases. Front Biosci 13:3046–3082

    Article  CAS  PubMed  Google Scholar 

  4. Yang KS, Kohler RH, Landon M et al (2015) Single cell resolution in vivo imaging of DNA damage following PARP inhibition. Sci Rep 5:10129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ossovskaya V, Koo IC, Kaldjian EP et al (2010) Upregulation of poly(ADP-ribose) polymerase-1 (PARP1) in triple-negative breast cancer and other primary human tumor types. Genes Cancer 1:812–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bièche I, De Murcia G, Lidereau R (1996) Poly(ADP-ribose) polymerase gene expression status and genomic instability in human breast cancer. Clin Cancer Res 2:1163–1167

    PubMed  Google Scholar 

  7. Rojo F, Garcia-Parra J, Zazo S et al (2012) Nuclear PARP-1 protein overexpression is associated with poor overall survival in early breast cancer. Ann Oncol 23:1156–1164

    Article  CAS  PubMed  Google Scholar 

  8. Alanazi M, Pathan AA, Arifeen Z et al (2013) Association between PARP-1 V762A polymorphism and breast cancer susceptibility in Saudi population. PLoS One 8, e85541

    Article  PubMed  PubMed Central  Google Scholar 

  9. Galia A, Calogero AE, Condorelli RA et al (2012) PARP-1 protein expression in glioblastoma multiforme. Eur J Histochem EJH 56

  10. Barton VN, Donson AM, Kleinschmidt-DeMasters BK et al (2009) PARP1 expression in pediatric central nervous system tumors. Pediatr Blood Cancer 53:1227–1230

    Article  PubMed  Google Scholar 

  11. Staibano S, Pepe S, Lo Muzio L et al (2005) Poly(adenosine diphosphate-ribose) polymerase 1 expression in malignant melanomas from photoexposed areas of the head and neck region. Hum Pathol 36:724–731

    Article  CAS  PubMed  Google Scholar 

  12. Thurber GM, Reiner T, Yang KS et al (2014) Effect of small-molecule modification on single-cell pharmacokinetics of PARP inhibitors. Mol Cancer Ther 13:986–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Reiner T, Lacy J, Keliher EJ et al (2012) Imaging therapeutic PARP inhibition in vivo through bioorthogonally developed companion imaging agents. Neoplasia 14:169–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Carlucci G, Carney B, Brand C et al (2015) Dual-modality optical/PET imaging of PARP1 in glioblastoma. Mol Imaging Biol. doi:10.1007/s11307-015-0858-0

    PubMed Central  Google Scholar 

  15. Irwin CP, Portorreal Y, Brand C et al (2014) PARPi-FL–a fluorescent PARP1 inhibitor for glioblastoma imaging. Neoplasia 16:432–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Keliher EJ, Klubnick JA, Reiner T et al (2014) Efficient acid-catalyzed (18) F/(19) F fluoride exchange of BODIPY dyes. ChemMedChem 9:1368–1373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Keliher EJ, Reiner T, Turetsky A et al (2011) High-yielding, two-step 18F labeling strategy for 18F-PARP1 inhibitors. ChemMedChem 6:424–427

    Article  CAS  PubMed  Google Scholar 

  18. Thurber GM, Yang KS, Reiner T et al (2013) Single-cell and subcellular pharmacokinetic imaging allows insight into drug action in vivo. Nat Commun 4:1504

    Article  PubMed  PubMed Central  Google Scholar 

  19. Reiner T, Keliher EJ, Earley S et al (2011) Synthesis and in vivo imaging of a 18F-labeled PARP1 inhibitor using a chemically orthogonal scavenger-assisted high-performance method. Angew Chem Int Ed Engl 50:1922–1925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhou D, Chu W, Xu J et al (2014) Synthesis, [(1)(8)F] radiolabeling, and evaluation of poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors for in vivo imaging of PARP-1 using positron emission tomography. Bioorg Med Chem 22:1700–1707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Menear KA, Adcock C, Boulter R et al (2008) 4-[3-(4-Cyclopropanecarbonylpiperazine-1-carbonyl)-4-fluorobenzyl]-2H-phthalazin-1-one: a novel bioavailable inhibitor of poly(ADP-ribose) polymerase-1. J Med Chem 51:6581–6591

    Article  CAS  PubMed  Google Scholar 

  22. Reiner T, Earley S, Turetsky A, Weissleder R (2010) Bioorthogonal small-molecule ligands for PARP1 imaging in living cells. Chembiochem 11:2374–2377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Valko K, Bevan C, Reynolds D (1997) Chromatographic hydrophobicity index by fast-gradient RP-HPLC: a high-throughput alternative to log P/log D. Anal Chem 69:2022–2029

    Article  CAS  PubMed  Google Scholar 

  24. Marik J, Sutcliffe JL (2007) Fully automated preparation of n.c.a. 4-[18F]fluorobenzoic acid and N-succinimidyl 4-[18F]fluorobenzoate using a Siemens/CTI chemistry process control unit (CPCU). Appl Radiat Isot 65:199–203

    Article  CAS  PubMed  Google Scholar 

  25. Li X, Link JM, Stekhova S et al (2008) Site-specific labeling of annexin V with F-18 for apoptosis imaging. Bioconjug Chem 19:1684–1688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen Y, Zhang L, Hao Q (2013) Olaparib: a promising PARP inhibitor in ovarian cancer therapy. Arch Gynecol Obstet 288:367–374

    Article  CAS  PubMed  Google Scholar 

  27. Murai J, Huang SY, Renaud A et al (2014) Stereospecific PARP trapping by BMN 673 and comparison with olaparib and rucaparib. Mol Cancer Ther 13:433–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Jason S. Lewis and Dr. Edmund J. Keliher for helpful discussions, Dr. Christian Brand and Christopher P. Irwin for help with experiments and Leah Bassity for editing the manuscript. Technical services provided by the MSKCC Small-Animal Imaging Core Facility, supported in part by NIH Cancer Center Support Grant No 2 P30 CA008748-48, are gratefully acknowledged. NIH Shared Instrumentation Grant No 1S10 OD016207-01, which provided funding support for the purchase of the Inveon PET/CT, is gratefully acknowledged. The authors further thank the Molecular Cytology Core at Memorial Sloan Kettering Cancer Center (P30 CA008748). The authors thank the NIH (K25EB016673 for T.R.), the Brain Tumor Center of Memorial Sloan Kettering Cancer Center (for T.R.), the Center for Molecular Imaging and Nanotechnology (for T.R.), the Clinical and Translational Science Center (CTSC) at Weill Cornell Medical College (NIH/NCATS Grant TL1TR000459 for B.C.), the American-Italian Cancer Foundation (AICF) Post-Doctoral Research Fellowship (for G.C.), the German Research Foundation (for S.K.), as well as the National Science Foundation Integrative Graduate Education and Research Traineeship (IGERT 0965983 at Hunter College) for their generous support.

Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Reiner.

Ethics declarations

Conflict of Interest

The authors report no conflicts of interest.

Additional information

Brandon Carney and Giuseppe Carlucci contributed equally to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

Supporting Information. Detailed experimental procedures, characterization data, tables, and figures provide additional documentation of the studies described in this manuscript. (PDF 30246 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carney, B., Carlucci, G., Salinas, B. et al. Non-invasive PET Imaging of PARP1 Expression in Glioblastoma Models. Mol Imaging Biol 18, 386–392 (2016). https://doi.org/10.1007/s11307-015-0904-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-015-0904-y

Key words

Navigation