Skip to main content

Advertisement

Log in

Preclinical Evaluation of 4-[18F]Fluoroglutamine PET to Assess ASCT2 Expression in Lung Cancer

  • Brief Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Alanine-serine-cysteine transporter 2 (ASCT2) expression has been demonstrated as a promising lung cancer biomarker. (2S,4R)-4-[18F]Fluoroglutamine (4-[18F]fluoro-Gln) positron emission tomography (PET) was evaluated in preclinical models of non-small cell lung cancer as a quantitative, non-invasive measure of ASCT2 expression.

Procedures

In vivo microPET studies of 4-[18F]fluoro-Gln uptake were undertaken in human cell line xenograft tumor-bearing mice of varying ASCT2 levels, followed by a genetically engineered mouse model of epidermal growth factor receptor (EGFR)-mutant lung cancer. The relationship between a tracer accumulation and ASCT2 levels in tumors was evaluated by IHC and immunoblotting.

Result

4-[18F]Fluoro-Gln uptake, but not 2-deoxy-2-[18F]fluoro-D-glucose, correlated with relative ASCT2 levels in xenograft tumors. In genetically engineered mice, 4-[18F]fluoro-Gln accumulation was significantly elevated in lung tumors, relative to normal lung and cardiac tissues.

Conclusions

4-[18F]Fluoro-Gln PET appears to provide a non-invasive measure of ASCT2 expression. Given the potential of ASCT2 as a lung cancer biomarker, this and other tracers reflecting ASCT2 levels could emerge as precision imaging diagnostics in this setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Edwards BK, Noone AM, Mariotto AB et al (2014) Annual Report to the Nation on the status of cancer, 1975-2010, featuring prevalence of comorbidity and impact on survival among persons with lung, colorectal, breast, or prostate cancer. Cancer 120:1290–1314

    Article  PubMed Central  PubMed  Google Scholar 

  2. Parkin DM, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics, 2002. CA Cancer J Clin 55:74–108

    Article  PubMed  Google Scholar 

  3. Deppen S, Putnam JB Jr, Andrade G et al (2011) Accuracy of FDG-PET to diagnose lung cancer in a region of endemic granulomatous disease. Ann Thorac Surg 92:428–432, discussion 433

    Article  PubMed Central  PubMed  Google Scholar 

  4. Burger IA, Zitzmann-Kolbe S, Pruim J et al (2014) First clinical results of (D)-18F-Fluoromethyltyrosine (BAY 86-9596) PET/CT in patients with non-small cell lung cancer and head and neck squamous cell carcinoma. J Nucl Med 55:1778–1785

    Article  CAS  PubMed  Google Scholar 

  5. Liu W, Le A, Hancock C et al (2012) Reprogramming of proline and glutamine metabolism contributes to the proliferative and metabolic responses regulated by oncogenic transcription factor c-MYC. Proc Natl Acad Sci U S A 109:8983–8988

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Gaglio D, Metallo CM, Gameiro PA et al (2011) Oncogenic K-Ras decouples glucose and glutamine metabolism to support cancer cell growth. Mol Syst Biol 7:523

    Article  PubMed Central  PubMed  Google Scholar 

  7. Wang JB, Erickson JW, Fuji R et al (2010) Targeting mitochondrial glutaminase activity inhibits oncogenic transformation. Cancer Cell 18:207–219

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Brower M, Carney DN, Oie HK, Gazdar AF, Minna JD (1986) Growth of cell lines and clinical specimens of human non-small cell lung cancer in a serum-free defined medium. Cancer Res 46:798–806

    CAS  PubMed  Google Scholar 

  9. Drogat B, Bouchecareilh M, North S et al (2007) Acute L-glutamine deprivation compromises VEGF-a upregulation in A549/8 human carcinoma cells. J Cell Physiol 212:463–472

    Article  CAS  PubMed  Google Scholar 

  10. Shelton LM, Huysentruyt LC, Seyfried TN (2010) Glutamine targeting inhibits systemic metastasis in the VM-M3 murine tumor model. Int J Cancer 127:2478–2485

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Hassanein M, Hoeksema MD, Shiota M et al (2013) SLC1A5 mediates glutamine transport required for lung cancer cell growth and survival. Clin Cancer Res 19:560–570

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Hassanein M, Qian J, Hoeksema MD, et al (2015) Targeting SLC1A5-mediated glutamine dependence in non-small cell lung cancer. Int J Cancer. doi:10.1002/ijc.29535

  13. Qu W, Zha Z, Ploessl K et al (2011) Synthesis of optically pure 4-fluoro-glutamines as potential metabolic imaging agents for tumors. J Am Chem Soc 133:1122–1133

    Article  CAS  PubMed  Google Scholar 

  14. Regales L, Balak MN, Gong Y et al (2007) Development of new mouse lung tumor models expressing EGFR T790M mutants associated with clinical resistance to kinase inhibitors. PLoS One 2, e810

    Article  PubMed Central  PubMed  Google Scholar 

  15. Qu W, Oya S, Lieberman BP et al (2012) Preparation and characterization of L-[5-11C]-glutamine for metabolic imaging of tumors. J Nucl Med 53:98–105

    Article  CAS  PubMed  Google Scholar 

  16. Hight MR, Cheung YY, Nickels ML et al (2014) A peptide-based positron emission tomography probe for in vivo detection of caspase activity in apoptotic cells. Clin Cancer Res 20:2126–2135

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Chmielecki J, Foo J, Oxnard GR et al (2011) Optimization of dosing for EGFR-mutant non-small cell lung cancer with evolutionary cancer modeling. Sci Transl Med 3:90ra59

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Ohashi K, Maruvka YE, Michor F, Pao W (2013) Epidermal growth factor receptor tyrosine kinase inhibitor-resistant disease. J Clin Oncol 31:1070–1080

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Deppen SA, Blume JD, Kensinger CD et al (2014) Accuracy of FDG-PET to diagnose lung cancer in areas with infectious lung disease: a meta-analysis. JAMA 312:1227–1236

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Venneti S, Dunphy MP, Zhang H et al (2015) Glutamine-based PET imaging facilitates enhanced metabolic evaluation of gliomas in vivo. Sci Transl Med 7:274ra217

    Article  Google Scholar 

  21. Schulte ML, Dawson ES, Saleh SA, Cuthbertson ML, Manning HC (2015) 2-Substituted Nγ-glutamylanilides as novel probes of ASCT2 with improved potency. Bioorg Med Chem Lett 25:113–116

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Wu Z, Zha Z, Li G, et al (2014) [(18)F](2S,4S)-4-(3-Fluoropropyl)glutamine as a tumor imaging agent. Mol Pharm 11(11):3852–3866

Download references

Acknowledgments

This work was supported by the Lung Cancer Research Foundation (LCRF), Vanderbilt Center for Molecular Probes (VCMP), NIH (ICMIC P50-CA128323, 2RO1CA102353, U01CA152662, P50-CA090949, P50-CA128323, P30-DK058404), and Kleberg Foundation.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Charles Manning.

Additional information

Mohamed Hassanein and Matthew R. Hight contributed equally to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 127 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassanein, M., Hight, M.R., Buck, J.R. et al. Preclinical Evaluation of 4-[18F]Fluoroglutamine PET to Assess ASCT2 Expression in Lung Cancer. Mol Imaging Biol 18, 18–23 (2016). https://doi.org/10.1007/s11307-015-0862-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-015-0862-4

Key words

Navigation