Skip to main content

Advertisement

Log in

Mucolytic Agents Can Enhance HER2 Receptor Accessibility for [89Zr]Trastuzumab, Improving HER2 Imaging in a Mucin-Overexpressing Breast Cancer Xenograft Mouse Model

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Binding of trastuzumab to HER2 receptors can be impaired by steric hindrance caused by mucin MUC4. As mucolytic drugs can breakdown disulfide bonds of mucoproteins, we checked if this approach could positively affect zirconium-89-labeled trastuzumab ([89Zr]T) binding/uptake.

Procedures

The effect of N-acetylcysteine (NAC) and MUC4 knockdown/stimulation on [89Zr]T binding/uptake were evaluated in MCF7(HER2−), BT474 and SKBr3(HER2+/MUC4−), and JIMT1(HER2+/MUC4+) cell lines. The results were then validated in SKBR3 and JIMT1 tumor-bearing nude mice with a microPET-CT and ex vivo analysis.

Results

Significant increases in [89Zr]T binding/uptake were observed in JIMT1 cells following MUC4 knockdown (62.4 ± 6.5 %) and exposure to NAC (62.8 ± 19.4 %). Compared to controls, mice treated with NAC showed a significant increase in [89Zr]T uptake in MUC4 tumors on microPET-CT (SUVmean (18.3 ± 4.7 %), SUVmax (41.7 ± 8.4 %)) and individual organ counting (37.3 ± 18.3 %). In contrast, no significant differences were observed in SKBr3.

Conclusion

NAC can enhance [89Zr]T accumulation and improve the HER2 imaging of MUC4-overexpressing tumors. The potential positive impact on trastuzumab-based treatment deserves further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sergina NV, Moasser MM (2007) The HER family and cancer: emerging molecular mechanisms and therapeutic targets. Trends Mol Med 13:527–534

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Bailey TA, Luan H, Clubb RJ et al (2011) Mechanisms of trastuzumab resistance in ErbB2-driven breast cancer and newer opportunities to overcome therapy resistance. J Carcinog 10:28

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Schechter AL, Stern DF, Vaidyanathan L et al (1984) The neu oncogene: an erb-B-related gene encoding a 185,000-Mr tumour antigen. Nature 312:513–516

    Article  CAS  PubMed  Google Scholar 

  4. Slamon DJ, Clark GM, Wong SG et al (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235:177–182

    Article  CAS  PubMed  Google Scholar 

  5. Davoli A, Hocevar BA, Brown TL (2010) Progression and treatment of HER2-positive breast cancer. Cancer Chemother Pharmacol 65:611–623

    Article  CAS  PubMed  Google Scholar 

  6. Mitri Z, Constantine T, O’Regan R (2012) The HER2 receptor in breast cancer: pathophysiology, clinical use, and new advances in therapy. Chemother Res Pract 2012:743193

    PubMed Central  PubMed  Google Scholar 

  7. Mukohara T (2011) Mechanisms of resistance to anti-human epidermal growth factor receptor 2 agents in breast cancer. Cancer Sci 102:1–8

    Article  CAS  PubMed  Google Scholar 

  8. Pohlmann PR, Mayer IA, Mernaugh R (2009) Resistance to trastuzumab in breast cancer. Clin Cancer Res Off J Am Assoc Cancer Res 15:7479–7491

    Article  CAS  Google Scholar 

  9. Mukhopadhyay P, Chakraborty S, Ponnusamy MP et al (2011) Mucins in the pathogenesis of breast cancer: implications in diagnosis, prognosis and therapy. Biochim Biophys Acta 1815:224–240

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Carraway KL, Price-Schiavi SA, Komatsu M et al (2001) Muc4/sialomucin complex in the mammary gland and breast cancer. J Mammary Gland Biol Neoplasia 6:323–337

    Article  CAS  PubMed  Google Scholar 

  11. Fiszman GL, Jasnis MA (2011) Molecular mechanisms of trastuzumab resistance in HER2 overexpressing breast cancer. Int J Breast Cancer 2011:352182

    Article  PubMed Central  PubMed  Google Scholar 

  12. Price-Schiavi SA, Jepson S, Li P et al (2002) Rat Muc4 (sialomucin complex) reduces binding of anti-ErbB2 antibodies to tumor cell surfaces, a potential mechanism for herceptin resistance. Int J Cancer J Int Cancer 99:783–791

    Article  CAS  Google Scholar 

  13. Nagy P, Friedländer E, Tanner M et al (2005) Decreased accessibility and lack of activation of ErbB2 in JIMT-1, a herceptin-resistant, MUC4-expressing breast cancer cell line. Cancer Res 65:473–482

    CAS  PubMed  Google Scholar 

  14. Dijkers EC, Oude Munnink TH, Kosterink JG et al (2010) Biodistribution of 89Zr-trastuzumab and PET imaging of HER2-positive lesions in patients with metastatic breast cancer. Clin Pharmacol Ther 87:586–592

    Article  CAS  PubMed  Google Scholar 

  15. OudeMunnink TH, Korte MA, Nagengast WB et al (2010) (89)Zr-trastuzumab PET visualises HER2 downregulation by the HSP90 inhibitor NVP-AUY922 in a human tumour xenograft. Eur J Cancer 46:678–684

  16. Dijkers ECF, Kosterink JGW, Rademaker AP et al (2009) Development and characterization of clinical-grade 89Zr-trastuzumab for HER2/neu immunoPET imaging. J Nucl Med Off Publ Soc Nucl Med 50:974–981

    CAS  Google Scholar 

  17. Rennstam K, Jönsson G, Tanner M et al (2007) Cytogenetic characterization and gene expression profiling of the trastuzumab-resistant breast cancer cell line JIMT-1. Cancer Genet Cytogenet 172:95–106

    Article  CAS  PubMed  Google Scholar 

  18. Andrianifahanana M, Agrawal A, Singh AP et al (2005) Synergistic induction of the MUC4 mucin gene by interferon-gamma and retinoic acid in human pancreatic tumour cells involves a reprogramming of signalling pathways. Oncogene 24:6143–6154

    Article  CAS  PubMed  Google Scholar 

  19. Kunigal S, Ponnusamy MP, Momi N et al (2012) Nicotine, IFN-γ and retinoic acid mediated induction of MUC4 in pancreatic cancer requires E2F1 and STAT-1 transcription factors and utilize different signaling cascades. Mol Cancer 11:24

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Choudhury A, Singh RK, Moniaux N et al (2000) Retinoic acid-dependent transforming growth factor-beta 2-mediated induction of MUC4 mucin expression in human pancreatic tumor cells follows retinoic acid receptor-alpha signaling pathway. J Biol Chem 275:33929–33936

    Article  CAS  PubMed  Google Scholar 

  21. Clark J, Clore EL, Zheng K et al (2010) Oral N-acetyl-cysteine attenuates loss of dopaminergic terminals in alpha-synuclein overexpressing mice. PLoS One 5:e12333

    Article  PubMed Central  PubMed  Google Scholar 

  22. Marian AJ, Senthil V, Chen SN, Lombardi R (2006) Antifibrotic effects of antioxidant N-acetylcysteine in a mouse model of human hypertrophic cardiomyopathy mutation. J Am Coll Cardiol 47:827–834

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. El Naqa I, Grigsby P, Apte A et al (2009) Exploring feature-based approaches in PET images for predicting cancer treatment outcomes. Pattern Recogn 42:1162–1171

    Article  Google Scholar 

  24. Van Velden FHP, Cheebsumon P, Yaqub M et al (2011) Evaluation of a cumulative SUV-volume histogram method for parameterizing heterogeneous intratumoural FDG uptake in non-small cell lung cancer PET studies. Eur J Nucl Med Mol Imaging 38:1636–1647

    Article  PubMed Central  PubMed  Google Scholar 

  25. Cotgreave IA (1997) N-acetylcysteine: pharmacological considerations and experimental and clinical applications. Adv Pharmacol San Diego Calif 38:205–227

    Article  CAS  Google Scholar 

  26. Schrier BP, Lichtendonk WJ, Witjes JA (2002) The effect of N-acetyl-l-cysteine on the viscosity of ileal neobladder mucus. World J Urol 20:64–67

    Article  CAS  PubMed  Google Scholar 

  27. De Lorenzo C, Tedesco A, Terrazzano G et al (2004) A human, compact, fully functional anti-ErbB2 antibody as a novel antitumour agent. Br J Cancer 91:1200–1204

    PubMed Central  PubMed  Google Scholar 

  28. Lorenzo CD, Cozzolino R, Carpentieri A et al (2005) Biological properties of a human compact anti-ErbB2 antibody. Carcinogenesis 26:1890–1895

    Article  PubMed  Google Scholar 

  29. Costantini DL, Chan C, Cai Z et al (2007) (111)In-labeled trastuzumab (Herceptin) modified with nuclear localization sequences (NLS): an Auger electron-emitting radiotherapeutic agent for HER2/neu-amplified breast cancer. J Nucl Med Off Publ Soc Nucl Med 48:1357–1368

    CAS  Google Scholar 

Download references

Acknowledgments

We express our gratitude to Les Amis de Bordet and Fonds Gaston Ithier for the grants obtained to conduct this study. We thank the nuMix team of the Center for Microscopy and Molecular Imaging (CMMI) for their assistance in the animal experiment work.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zéna Wimana.

Additional information

S. Goldman, G. Ghanem and P. Flamen contributed equally to this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wimana, Z., Gebhart, G., Guiot, T. et al. Mucolytic Agents Can Enhance HER2 Receptor Accessibility for [89Zr]Trastuzumab, Improving HER2 Imaging in a Mucin-Overexpressing Breast Cancer Xenograft Mouse Model. Mol Imaging Biol 17, 697–703 (2015). https://doi.org/10.1007/s11307-015-0840-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-015-0840-x

Key words

Navigation