Skip to main content

Advertisement

Log in

Patient-Specific Dosimetry Using Pretherapy [124I]m-iodobenzylguanidine ([124I]mIBG) Dynamic PET/CT Imaging Before [131I]mIBG Targeted Radionuclide Therapy for Neuroblastoma

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Iodine-131-m-iodobenzylguanidine ([131I]mIBG)-targeted radionuclide therapy (TRT) is a standard treatment for recurrent or refractory neuroblastoma with response rates of 30–40 %. The aim of this study is to demonstrate patient-specific dosimetry using quantitative [124I]mIBG positron emission tomography/X-ray computed tomography (PET/CT) imaging with a GEometry ANd Tracking 4 (Geant4)-based Monte Carlo method for better treatment planning.

Procedures

A Monte Carlo dosimetry method was developed using the Geant4 toolkit with voxelized anatomical geometry and source distribution as input. The presegmented hybrid computational human phantoms developed by the University of Florida and the National Cancer Institute (UF/NCI) were used as a surrogate to characterize the anatomy of a given patient. S values for I-131 were estimated by the phantoms coupled with Geant4 and compared with those estimated by OLINDA|EXM and MCNPX for the newborn model. To obtain patient-specific biodistribution of [131I]mIBG, a 10-year-old girl with relapsed neuroblastoma was imaged with [124I]mIBG PET/CT at four time points prior to the planned [131I]mIBG TRT. The organ- and tumor-absorbed doses of the clinical case were estimated with the Geant4 method using the modified UF/NCI 10-year-old phantom with tumors and the patient-specific residence time.

Results

For the newborn model, the Geant4 S values were consistent with the MCNPX S values. The S value ratio of the Geant4 method to OLINDA|EXM ranged from 0.08 to 6.5 of all major organs. The [131I]mIBG residence time quantified from the pretherapy [124I]mIBG PET/CT imaging of the 10-year-old patient was mostly comparable to those previously reported. Organ-absorbed dose for the salivary glands was 98.0 Gy, heart wall 36.5 Gy, and liver 34.3 Gy, while tumor-absorbed dose ranged from 143.9 to 1,641.3 Gy in different sites.

Conclusions

Patient-specific dosimetry for [131I]mIBG TRT was accomplished using pretherapy [124I]mIBG PET/CT imaging and a Geant4-based Monte Carlo dosimetry method. The Geant4 method with quantitative pretherapy imaging can provide dose estimates to normal organs and tumors with more realistic simulation geometry, and thus may improve treatment planning for [131I]mIBG TRT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Matthay KK, Tan JC, Villablanca JG et al (2006) Phase I dose escalation of iodine-131-metaiodobenzylguanidine with myeloablative chemotherapy and autologous stem-cell transplantation in refractory neuroblastoma: a new approaches to Neuroblastoma Therapy Consortium Study. J Clin Oncol 24:500–6

    Article  CAS  PubMed  Google Scholar 

  2. Matthay KK, Weiss B, Villablanca JG et al (2012) Dose escalation study of no-carrier-added 131I-metaiodobenzylguanidine for relapsed or refractory neuroblastoma: new approaches to neuroblastoma therapy consortium trial. J Nucl Med 53:1155–63

    Article  CAS  PubMed  Google Scholar 

  3. Matthay KK, Yanik G, Messina J et al (2007) Phase II study on the effect of disease sites, age, and prior therapy on response to iodine-131-metaiodobenzylguanidine therapy in refractory neuroblastoma. J Clin Oncol 25:1054–60

    Article  CAS  PubMed  Google Scholar 

  4. Carlin S, Mairs RJ, McCluskey AG et al (2003) Development of a real-time polymerase chain reaction assay for prediction of the uptake of meta-[(131)I]iodobenzylguanidine by neuroblastoma tumors. Clin Cancer Res 9:3338–44

    CAS  PubMed  Google Scholar 

  5. Treuner J, Feine U, Niethammer D et al (1984) Scintigraphic imaging of neuroblastoma with [131-I]iodobenzylguanidine. Lancet 1:333–4

    Article  CAS  PubMed  Google Scholar 

  6. Matthay KK, DeSantes K, Hasegawa B et al (1998) Phase I dose escalation of 131I-metaiodobenzylguanidine with autologous bone marrow support in refractory neuroblastoma. J Clin Oncol 16:229–36

    CAS  PubMed  Google Scholar 

  7. DuBois SG, Matthay KK (2013) 131I-Metaiodobenzylguanidine therapy in children with advanced neuroblastoma. Q J Nucl Med Mol Im 57:53–65

    CAS  Google Scholar 

  8. Wilson JS, Gains JE, Moroz V, et al. (2013) A systematic review of I-meta iodobenzylguanidine molecular radiotherapy for neuroblastoma. Eur J Cancer

  9. Yoriyaz H, Stabin MG, dos Santos A (2001) Monte Carlo MCNP-4B-based absorbed dose distribution estimates for patient-specific dosimetry. J Nucl Med 42:662–9

    CAS  PubMed  Google Scholar 

  10. Stabin MG, Yoriyaz H (2002) Photon specific absorbed fractions calculated in the trunk of an adult male voxel-based phantom. Health Phys 82:21–44

    Article  CAS  PubMed  Google Scholar 

  11. Lee C, Park S, Lee JK (2007) Specific absorbed fraction for Korean adult voxel phantom from internal photon source. Radiat Prot Dosimet 123:360–8

    Article  CAS  Google Scholar 

  12. Lamart S, Bouville A, Simon SL et al (2011) Comparison of internal dosimetry factors for three classes of adult computational phantoms with emphasis on I-131 in the thyroid. Phys Med Biol 56:7317–35

    Article  PubMed Central  PubMed  Google Scholar 

  13. Cristy M, Eckerman KF (1987) Specific absorbed fractions of energy at various ages from internal photon sources: 1, methods. Oak Ridge National Laboratory, Oak Ridge

    Google Scholar 

  14. Lee C-L, Wahnishe H, Sayre GA et al (2010) Radiation dose estimation using preclinical imaging with 124I-metaiodobenzylguanidine (MIBG) PET. Med Phys 37:4861

    Article  PubMed Central  PubMed  Google Scholar 

  15. Seo Y, Gustafson WC, Dannoon SF et al (2012) Tumor dosimetry using [124I]m-iodobenzylguanidine microPET/CT for [131I]m-iodobenzylguanidine treatment of neuroblastoma in a murine xenograft model. Mol Imag Biol 14:735–42

    Article  Google Scholar 

  16. Moroz MA, Serganova I, Zanzonico P et al (2007) Imaging hNET reporter gene expression with 124I-MIBG. J Nucl Med 48:827–36

    Article  CAS  PubMed  Google Scholar 

  17. Agostinelli S, Allison J, Amako K et al (2003) Geant4—a simulation toolkit. Nucl Instrum Methods Phys Res A 506:250–303

    Article  CAS  Google Scholar 

  18. Allison J, Amako K, Apostolakis J et al (2006) Geant4 developments and applications. IEEE Trans Nucl Sci 53:270–278

    Article  Google Scholar 

  19. Stabin MG, Sparks RB, Crowe E (2005) OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med 46:1023–7

    PubMed  Google Scholar 

  20. Wayson M, Lee C, Sgouros G et al (2012) Internal photon and electron dosimetry of the newborn patient—a hybrid computational phantom study. Phys Med Biol 57:1433–57

    Article  PubMed  Google Scholar 

  21. Lee C, Lodwick D, Hasenauer D, Williams JL, Bolch WE (2007) Hybrid computational phantoms of the male and female newborn patient: NURBS-based whole-body models. Phys Med Biol 52:3309–33

    Article  PubMed  Google Scholar 

  22. Lee C, Lodwick D, Hurtado J et al (2010) The UF family of reference hybrid phantoms for computational radiation dosimetry. Phys Med Biol 55:339–63

    Article  PubMed Central  PubMed  Google Scholar 

  23. Loevinger R, Budinger TF, Watson EE (1988) MIRD primer for absorbed dose calculations. Society of Nuclear Medicine New York

  24. Johnson PB, Bahadori AA, Eckerman KF, Lee C, Bolch WE (2011) Response functions for computing absorbed dose to skeletal tissues from photon irradiation—an update. Phys Med Biol 56:2347–65

    Article  PubMed Central  PubMed  Google Scholar 

  25. Pafundi D, Lee C, Watchman C et al (2009) An image-based skeletal tissue model for the ICRP reference newborn. Phys Med Biol 54:4497–531

    Article  PubMed  Google Scholar 

  26. Pafundi D, Rajon D, Jokisch D, Lee C, Bolch W (2010) An image-based skeletal dosimetry model for the ICRP reference newborn—internal electron sources. Phys Med Biol 55:1785–814

    Article  PubMed  Google Scholar 

  27. Xie T, Bolch WE, Lee C, Zaidi H (2013) Pediatric radiation dosimetry for positron-emitting radionuclides using anthropomorphic phantoms. Med Phys 40:102502

    Article  PubMed  Google Scholar 

  28. Tuli J (2014) Evaluated Nuclear Structure Data File (ENSDF) Retrieval. http://www.nndc.bnl.gov/ensdf/

  29. Hauf S, Kuster M, Batic M, et al. (2013) Radioactive decays in Geant4

  30. Loening AM, Gambhir SS (2003) AMIDE: a free software tool for multimodality medical image analysis. Mol Imaging 2:131–137

    Article  PubMed  Google Scholar 

  31. Bazan JG, Koong AC, Kapp DS et al (2013) Metabolic tumor volume predicts disease progression and survival in patients with squamous cell carcinoma of the anal canal. J Nucl Med 54:27–32

    Article  PubMed  Google Scholar 

  32. Ciernik IF, Dizendorf E, Baumert BG et al (2003) Radiation treatment planning with an integrated positron emission and computer tomography (PET/CT): a feasibility study. Int J Radiat Oncol Biol Phys 57:853–863

    Article  PubMed  Google Scholar 

  33. Evans JF, Stabin MG, Stubbs JB (1995) Specific absorbed fractions of energy from internal photon sources in brain tumor and cerebrospinal fluid. Med Phys 22:331–40

    Article  CAS  PubMed  Google Scholar 

  34. Stabin MG, Siegel JA (2003) Physical models and dose factors for use in internal dose assessment. Health Phys 85:294–310

    Article  CAS  PubMed  Google Scholar 

  35. Johnson PB, Whalen SR, Wayson M et al (2009) Hybrid patient-dependent phantoms covering statistical distributions of body morphometry in the US adult and pediatric population. Proc IEEE 97:2060–2075

    Article  Google Scholar 

  36. Matthay KK, Panina C, Huberty J et al (2001) Correlation of tumor and whole-body dosimetry with tumor response and toxicity in refractory neuroblastoma treated with 131I-MIBG. J Nucl Med 42:1713–21

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the clinical coordinators, technologists, nurses, and physicians who made this study possible at UCSF. We also would like to thank Jungwook Shin, Ph.D., for helpful advice for developing Geant4 simulations. This work was supported in part by the National Cancer Institute under grant R01 CA154561 and PO181403 and by the Alex Scott Lemonade and Dougherty Foundations.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shih-ying Huang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 524 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Sy., Bolch, W.E., Lee, C. et al. Patient-Specific Dosimetry Using Pretherapy [124I]m-iodobenzylguanidine ([124I]mIBG) Dynamic PET/CT Imaging Before [131I]mIBG Targeted Radionuclide Therapy for Neuroblastoma. Mol Imaging Biol 17, 284–294 (2015). https://doi.org/10.1007/s11307-014-0783-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-014-0783-7

Key words

Navigation