Skip to main content

Advertisement

Log in

Clinical Assessment of MR-Guided 3-Class and 4-Class Attenuation Correction in PET/MR

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

We compare the quantitative accuracy of magnetic resonance imaging (MRI)-based attenuation correction (AC) using the 3-class attenuation map (PET-MRAC3c) implemented on the Ingenuity TF PET/MRI and the 4-class attenuation map (PET-MRAC4c) similar to the approach used on the Siemens mMR PET/MR considering CT-based attenuation-corrected PET images (PET-CTAC) as standard of reference.

Procedures

Fourteen patients with malignant tumors underwent whole-body sequential 2-deoxy-2-[18F]fluoro-d-glucose (18F-FDG) positron emission tomography (PET)/X-ray computed tomography (CT) and PET/MR imaging. A 3-class attenuation map was obtained from segmentation of T1-weighted MR images followed by assignment of attenuation coefficients (air 0 cm−1, lung 0.022 cm−1, soft tissue 0.096 cm−1), whereas a 4-class attenuation map was derived from a MR Dixon sequence (air 0 cm−1, lung 0.018 cm−1, fat 0.086 cm−1, soft tissue 0.096 cm−1). Additional adipose tissue class and inner body air cavities (e.g., sinus and abdomen) were also considered. Different attenuation coefficients were assigned to the lungs since the two techniques were implemented as they were proposed without any modification. Standardized uptake value (SUV)mean and SUVmax metrics were calculated for volumes of interest in various organs/tissues and malignant lesions. Well-established metrics were used for the analysis of SUVs estimated using both PET-MRAC techniques and PET-CTAC including relative error, Spearman rank correlation, and Bland and Altman analysis.

Results

PET-MRAC3c and PET-MRAC4c revealed significant underestimation of SUV for normal organs (−17.4 ± 8.5 and −22.0 ± 6.8 %, respectively) compared to PET-CTAC. Lesions’ SUV presented the same trend with larger underestimation for PET-MRAC4c (−9.2 ± 6.1 %) compared to PET-MRAC3c (−3.9 ± 9.0). The different attenuation coefficients assigned to the lungs with both techniques resulted in significant positive bias on PET-MRAC3c (18.6 ± 15.3 %) and low negative bias on PET-MRAC4c (−0.5 ± 13.3 %). Both approaches yielded the largest differences in and near bony structures. Despite the large bias, there was good correlation between PET-MRAC3c (R = 0.97, P < 0.01) and PET-CTAC, and PET-MRAC4c (R = 0.97, P < 0.01) and PET-CTAC, respectively.

Conclusions

PET-MRAC3c resulted in significant systematic positive bias in the lungs owing to the lower attenuation coefficient used and negative bias in other regions. PET-MRAC4c slightly underestimated tracer uptake in the lungs and led to even larger negative bias than PET-MRAC3c in other body regions. The presence of artifacts in the MRAC might lead to misinterpretation of clinical studies. As such, the attenuation map needs to be checked for artifacts as part of the reading procedure to avoid misinterpretation of SUV measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  1. Judenhofer MS, Wehrl HF, Newport DF et al (2008) Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nat Med 14:459–465

    Article  CAS  PubMed  Google Scholar 

  2. Zukotynski KA, Fahey FH, Kocak M et al (2011) Evaluation of 18F-FDG PET and MRI associations in pediatric diffuse intrinsic brain stem glioma: a report from the pediatric brain tumor consortium. J Nucl Med 52:188–195

    Article  PubMed Central  PubMed  Google Scholar 

  3. Hirsch FW, Sattler B, Sorge I et al (2013) PET/MR in children. Initial clinical experience in paediatric oncology using an integrated PET/MR scanner. Pediatr Radiol 43:860–875

    Article  PubMed Central  PubMed  Google Scholar 

  4. Zaidi H, Del Guerra A (2011) An outlook on future design of hybrid PET/MRI systems. Med Phys 38:5667–5689

    Article  PubMed  Google Scholar 

  5. Varoquaux A, Rager O, Poncet A et al (2014) Detection and quantification of focal uptake in head and neck tumours: (18)F-FDG PET/MR versus PET/CT. Eur J Nucl Med Mol Imaging 41:462–475

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Wiesmuller M, Quick HH, Navalpakkam B et al (2013) Comparison of lesion detection and quantitation of tracer uptake between PET from a simultaneously acquiring whole-body PET/MR hybrid scanner and PET from PET/CT. Eur J Nucl Med Mol Imaging 40:12–21

    Article  PubMed  Google Scholar 

  7. Becker M, Zaidi H (2014) Imaging in head and neck squamous cell carcinoma: the potential role of PET/MRI. Br J Radiol 87:20130677

    Article  PubMed  Google Scholar 

  8. Zaidi H (2007) Is MRI-guided attenuation correction a viable option for dual-modality PET/MR imaging? Radiology 244:639–642

    Article  PubMed  Google Scholar 

  9. Bezrukov I, Mantlik F, Schmidt H et al (2013) MR-based PET attenuation correction for PET/MR imaging. Semin Nucl Med 43:45–59

    Article  PubMed  Google Scholar 

  10. Zaidi H, Montandon M-L, Slosman DO (2003) Magnetic resonance imaging-guided attenuation and scatter corrections in three-dimensional brain positron emission tomography. Med Phys 30:937–948

    Article  PubMed  Google Scholar 

  11. Martinez-Moller A, Souvatzoglou M, Delso G et al (2009) Tissue classification as a potential approach for attenuation correction in whole-body PET/MRI: evaluation with PET/CT data. J Nucl Med 50:520–526

    Article  PubMed  Google Scholar 

  12. Schulz V, Torres-Espallardo I, Renisch S et al (2011) Automatic, three-segment, MR-based attenuation correction for whole-body PET/MR data. Eur J Nucl Med Mol Imaging 38:138–152

    Article  CAS  PubMed  Google Scholar 

  13. Montandon M-L, Zaidi H (2005) Atlas-guided non-uniform attenuation correction in cerebral 3D PET imaging. Neuroimage 25:278–286

    Article  PubMed  Google Scholar 

  14. Hofmann M, Bezrukov I, Mantlik F et al (2011) MRI-based attenuation correction for whole-body PET/MRI: quantitative evaluation of segmentation- and atlas-based methods. J Nucl Med 52:1392–1399

    Article  PubMed  Google Scholar 

  15. Catana C, van der Kouwe A, Benner T et al (2010) Toward implementing an MRI-based PET attenuation-correction method for neurologic studies on the MR-PET brain prototype. J Nucl Med 51:1431–1438

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Keereman V, Fierens Y, Broux T et al (2010) MRI-based attenuation correction for PET/MRI using ultrashort echo time sequences. J Nucl Med 51:812–818

    Article  PubMed  Google Scholar 

  17. Berker Y, Franke J, Salomon A et al (2012) MRI-based attenuation correction for hybrid PET/MRI systems: A 4-class tissue segmentation technique using a combined ultrashort-echo-time/Dixon MRI sequence. J Nucl Med 53:796–804

    Article  PubMed  Google Scholar 

  18. Salomon A, Goedicke A, Schweizer B et al (2011) Simultaneous reconstruction of activity and attenuation for PET/MR. IEEE Trans Med Imaging 30:804–813

    Article  PubMed  Google Scholar 

  19. Defrise M, Rezaei A, Nuyts J (2012) Time-of-flight PET data determine the attenuation sinogram up to a constant. Phys Med Biol 57:885–899

    Article  PubMed  Google Scholar 

  20. Rezaei A, Defrise M, Bal G et al (2012) Simultaneous reconstruction of activity and attenuation in time-of-flight PET. IEEE Trans Med Imaging 31(12):2224–2233

    Article  PubMed  Google Scholar 

  21. Schramm G, Langner J, Hofheinz F et al (2013) Quantitative accuracy of attenuation correction in the Philips Ingenuity TF whole-body PET/MR system: a direct comparison with transmission-based attenuation correction. Magn Reson Mat Phys Biol Med 26:115–126

    Article  CAS  Google Scholar 

  22. Ouyang J, Chun SY, Petibon Y et al (2013) Bias atlases for segmentation-based PET attenuation correction using PET-CT and MR. IEEE Trans Nucl Sci 60:3373–3382

    Article  PubMed Central  PubMed  Google Scholar 

  23. Samarin A, Burger C, Wollenweber SD et al (2012) PET/MR imaging of bone lesions—implications for PET quantification from imperfect attenuation correction. Eur J Nucl Med Mol Imaging 39:1154–1160

    Article  PubMed  Google Scholar 

  24. Keereman V, Holen RV, Mollet P, Vandenberghe S (2011) The effect of errors in segmented attenuation maps on PET quantification. Med Phys 38:6010–6019

    Article  PubMed  Google Scholar 

  25. Akbarzadeh A, Ay MR, Ahmadian A et al (2013) MRI-guided attenuation correction in whole-body PET/MR: assessment of the effect of bone attenuation. Ann Nucl Med 27:152–162

    Article  CAS  PubMed  Google Scholar 

  26. Burgos N, Cardoso MJ, Modat M et al (2013) Attenuation correction synthesis for hybrid PET-MR scanners. Med Image Comput Comput Assist Interv 16:147–154

    PubMed  Google Scholar 

  27. Zaidi H, Ojha N, Morich M et al (2011) Design and performance evaluation of a whole-body Ingenuity TF PET-MRI system. Phys Med Biol 56:3091–3106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Dixon WT (1984) Simple proton spectroscopic imaging. Radiology 153:189–194

    Article  CAS  PubMed  Google Scholar 

  29. Delso G, Furst S, Jakoby B et al (2011) Performance measurements of the Siemens mMR integrated whole-body PET/MR scanner. J Nucl Med 52:1914–1922

    Article  PubMed  Google Scholar 

  30. Eiber M, Martinez-Moller A, Souvatzoglou M et al (2011) Value of a Dixon based MR-PET attenuation correction sequence for the localization and evaluation of PET positive lesions. J Nucl Med 52:105

    Google Scholar 

  31. Klein S, Staring M, Murphy K et al (2010) Elastix: a toolbox for intensity-based medical image registration. IEEE Trans Med Imaging 29:196–205

    Article  PubMed  Google Scholar 

  32. Akbarzadeh A, Gutierrez D, Baskin A et al (2013) Evaluation of whole-body MR to CT deformable image registration. J Appl Clin Med Phys 14:238–253

    Google Scholar 

  33. Hu Z, Ojha N, Renisch S, et al. (2009) MR-based attenuation correction for a whole-body sequential PET/MR system. IEEE Nuclear Science Symposium & Medical Imaging Conference. 25-31 October 2009, Orlando (FL), USA: IEEE; 2009, p 3508–12

  34. Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vision 1:321–331

    Article  Google Scholar 

  35. Yushkevich PA, Piven J, Hazlett HC et al (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31:1116–1128

    Article  PubMed  Google Scholar 

  36. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Sys Man Cyber 9:62–66

    Article  Google Scholar 

  37. Huang SC (2000) Anatomy of SUV. Standardized uptake value. Nucl Med Biol 27:643–646

    Article  CAS  PubMed  Google Scholar 

  38. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310

    Article  CAS  PubMed  Google Scholar 

  39. Gönen M, Panageas KS, Larson SM (2001) Statistical issues in analysis of diagnostic imaging experiments with multiple observations per patient1. Radiology 221:763–767

    Article  PubMed  Google Scholar 

  40. Galbraith S, Daniel JA, Vissel B (2010) A study of clustered data and approaches to its analysis. J Neurosci 30:10601–10608

    Article  CAS  PubMed  Google Scholar 

  41. Ladefoged CN, Andersen FL, Keller SH et al (2013) PET/MR imaging of the pelvis in the presence of endoprostheses: reducing image artifacts and increasing accuracy through inpainting. Eur J Nucl Med Mol Imaging 40:594–601

    Article  PubMed  Google Scholar 

  42. Kim JH, Lee JS, Song IC, Lee DS (2012) Comparison of segmentation-based attenuation correction methods for PET/MRI: evaluation of bone and liver standardized uptake value with oncologic PET/CT data. J Nucl Med 53:1878–1882

    Article  PubMed  Google Scholar 

  43. Bini J, Izquierdo-Garcia D, Mateo J et al (2013) Preclinical evaluation of MR attenuation correction versus CT attenuation correction on a sequential whole-body MR/PET scanner. Invest Radiol 48:313–322

    Article  PubMed Central  PubMed  Google Scholar 

  44. Soejima K, Yamaguchi K, Kohda E et al (2000) Longitudinal follow-up study of smoking-induced lung density changes by high-resolution computed tomography. Am J Respir Crit Care Med 161:1264–1273

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Swiss National Science Foundation under grants SNSF 31003A-135576, SNFN 31003A-149957, and SNSF 320030_135728/1.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Habib Zaidi.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 779 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arabi, H., Rager, O., Alem, A. et al. Clinical Assessment of MR-Guided 3-Class and 4-Class Attenuation Correction in PET/MR. Mol Imaging Biol 17, 264–276 (2015). https://doi.org/10.1007/s11307-014-0777-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-014-0777-5

Key words

Navigation