Skip to main content

Advertisement

Log in

Differences in Transport Mechanisms of trans-1-Amino-3-[18F]Fluorocyclobutanecarboxylic Acid in Inflammation, Prostate Cancer, and Glioma Cells: Comparison with l-[Methyl-11C]Methionine and 2-Deoxy-2-[18F]Fluoro-d-Glucose

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

We aimed to elucidate trans-1-amino-3-[18F]fluorocyclobutanecarboxylic acid (anti-[18F]FACBC) uptake mechanisms in inflammatory and tumor cells, in comparison with those of l-[methyl-11C]methionine ([11C]Met) and 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG).

Procedures

Using carbon-14-labeled tracers, in vitro time-course, pH dependence, and competitive inhibition uptake experiments were performed in rat inflammatory (T cells, B cells, granulocytes, macrophages), prostate cancer (MLLB2), and glioma (C6) cells.

Results

Anti-[14C]FACBC uptake ratios of T/B cells to tumor cells were comparable, while those of granulocytes/macrophages to tumor cells were lower than those for [14C]FDG. Over half of anti-[14C]FACBC uptake by T/B and tumor cells was mediated by Na+-dependent amino acid transporters (system ASC), whereas most [14C]Met transport in all cells was mediated by Na+-independent carriers (system L).

Conclusions

The low anti-[18F]FACBC accumulation in granulocytes/macrophages may be advantageous in discriminating inflamed regions from tumors. The significant anti-[18F]FACBC uptake in T/B cells may cause false-positives in some cancer patients who undergo FACBC-positron emission tomography (PET).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Fanti S, Franchi R, Battista G et al (2005) PET and PET-CT. State of the art and future prospects. Radiol Med 110:1–15

    PubMed  Google Scholar 

  2. Singhal T, Narayanan TK, Jain V et al (2008) 11C-l-methionine positron emission tomography in the clinical management of cerebral gliomas. Mol Imaging Biol 10:1–18

    Article  PubMed  Google Scholar 

  3. Shoup TM, Olson J, Hoffman JM et al (1999) Synthesis and evaluation of [18F]1-amino-3-fluorocyclobutane-1-carboxylic acid to image brain tumors. J Nucl Med 40:331–338

    CAS  PubMed  Google Scholar 

  4. Akhurst T, Beattie B, Gogiberidze G, et al. (2006) [18F]FACBC imaging of recurrent gliomas: a comparison with [11C]methionine and MRI [abstract]. J Nucl Med 47:79P.

    Google Scholar 

  5. Oka S, Hattori R, Kurosaki F et al (2007) A preliminary study of anti-1-amino-3-18F-fluorocyclobutyl-1-carboxylic acid for the detection of prostate cancer. J Nucl Med 48:46–55

    CAS  PubMed  Google Scholar 

  6. Sasajima T, Ono T, Shimada N et al (2013) Trans-1-amino-3-18F-fluorocyclobutanecarboxylic acid (anti-18F-FACBC) is a feasible alternative to 11C-methyl-l-methionine and magnetic resonance imaging for monitoring treatment response in gliomas. Nucl Med Biol 40:808–815

    Article  CAS  PubMed  Google Scholar 

  7. Schuster DM, Taleghani PA, Nieh PT et al (2013) Characterization of primary prostate carcinoma by anti-1-amino-2-[18F] -fluorocyclobutane-1-carboxylic acid (anti-3-[18F] FACBC) uptake. Am J Nucl Med Mol Imaging 3:85–96

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Sfanos KS, De Marzo AM (2012) Prostate cancer and inflammation: the evidence. Histopathology 60:199–215

    Article  PubMed  Google Scholar 

  9. Okudaira H, Shikano N, Nishii R et al (2011) Putative transport mechanism and intracellular fate of trans-1-amino-3-18F-fluorocyclobutanecarboxylic acid in human prostate cancer. J Nucl Med 52:822–829

    Article  CAS  PubMed  Google Scholar 

  10. Oka S, Okudaira H, Yoshida Y et al (2012) Transport mechanisms of trans-1-amino-3-fluoro[1-14C]cyclobutanecarboxylic acid in prostate cancer cells. Nucl Med Biol 39:109–119

    Article  CAS  PubMed  Google Scholar 

  11. Okudaira H, Nakanishi T, Oka S et al (2013) Kinetic analyses of trans-1-amino-3-[18F]fluorocyclobutanecarboxylic acid transport in Xenopus laevis oocytes expressing human ASCT2 and SNAT2. Nucl Med Biol 40:670–675

    Article  CAS  PubMed  Google Scholar 

  12. Hediger MA, Romero MF, Peng JB et al (2004) The ABCs of solute carriers: physiological, pathological and therapeutic implications of human membrane transport proteins. Pflugers Arch 447:465–468

    Article  CAS  PubMed  Google Scholar 

  13. Kanai Y, Fukasawa Y, Cha SH et al (2000) Transport properties of a system y+L neutral and basic AA transporter. Insights into the mechanisms of substrate recognition. J Biol Chem 275:20787–20793

    Article  CAS  PubMed  Google Scholar 

  14. Rau FC, Weber WA, Wester HJ et al (2002) O-(2-[18F]Fluoroethyl)-l-tyrosine (FET): a tracer for differentiation of tumour from inflammation in murine lymph nodes. Eur J Nucl Med Mol Imaging 29:1039–1046

    Article  CAS  PubMed  Google Scholar 

  15. Tsukada H, Sato K, Fukumoto D et al (2006) Evaluation of d-isomers of O-11C-methyl tyrosine and O-18F-fluoromethyl tyrosine as tumor-imaging agents in tumor-bearing mice: comparison with l- and d-11C-methionine. J Nucl Med 47:679–688

    CAS  PubMed  Google Scholar 

  16. Tsuyuguchi N, Sunada I, Ohata K et al (2003) Evaluation of treatment effects in brain abscess with positron emission tomography: comparison of fluorine-18-fluorodeoxyglucose and carbon-11-methionine. Ann Nucl Med 17:47–51

    Article  PubMed  Google Scholar 

  17. Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140:883–899

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Segel GB, Simon W, Lichtman MA (1984) Multicomponent analysis of amino acid transport in human lymphocytes. Diminished l-system transport in chronic leukemic B lymphocytes. J Clin Invest 74:17–24

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Ishii T, Sugita Y, Bannai S (1987) Regulation of glutathione levels in mouse spleen lymphocytes by transport of cysteine. J Cell Physiol 133:330–336

    Article  CAS  PubMed  Google Scholar 

  20. Gmünder H, Eck HP, Dröge W (1991) Low membrane transport activity for cystine in resting and mitogenically stimulated human lymphocyte preparations and human T cell clones. Eur J Biochem 201:113–117

    Article  PubMed  Google Scholar 

  21. Iruloh CG, D'Souza SW, Fergusson WD et al (2009) Amino acid transport systems beta and A in fetal T lymphocytes in intrauterine growth restriction and with tumor necrosis factor-alpha treatment. Pediatr Res 65:51–56

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Gaugitsch HW, Prieschl EE, Kalthoff F et al (1992) A novel transiently expressed, integral membrane protein linked to cell activation. Molecular cloning via the rapid degradation signal AUUUA. J Biol Chem 267:11267–11273

    CAS  PubMed  Google Scholar 

  23. Matsumoto Y, Satoh-Ueno K, Yoshimura A et al (1999) Identification and immunological characterization of a novel 40-kDa protein linked to CD98 antigen. Cell Struct Funct 24:217–226

    Article  CAS  PubMed  Google Scholar 

  24. Levring TB, Hansen AK, Nielsen BL et al (2012) Activated human CD4+ T cells express transporters for both cysteine and cystine. Sci Rep 2:266

    Article  PubMed Central  PubMed  Google Scholar 

  25. Fuchs BC, Bode BP (2005) Amino acid transporters ASCT2 and LAT1 in cancer: partners in crime? Semin Cancer Biol 15:254–266

    Article  CAS  PubMed  Google Scholar 

  26. Newsholme P (2001) Why is l-glutamine metabolism important to cells of the immune system in health, postinjury, surgery or infection? J Nutr 131:2515S–2522S

    CAS  PubMed  Google Scholar 

  27. Qu W, Oya S, Lieberman BP et al (2012) Preparation and characterization of l-[5-11C]-glutamine for metabolic imaging of tumors. J Nucl Med 53:98–105

    Article  CAS  PubMed  Google Scholar 

  28. Ploessl K, Wang L, Lieberman BP et al (2012) Comparative evaluation of 18F-labeled glutamic acid and glutamine as tumor metabolic imaging agents. J Nucl Med 53:1616–1624

    Article  CAS  PubMed  Google Scholar 

  29. Shreve PD, Anzai Y, Wahl RL (1999) Pitfalls in oncologic diagnosis with FDG PET imaging: physiologic and benign variants. Radiographics 19:61–77

    Article  CAS  PubMed  Google Scholar 

  30. Fossati G, Ricevuti G, Edwards SW et al (1999) Neutrophil infiltration into human gliomas. Acta Neuropathol 98:349–354

    Article  CAS  PubMed  Google Scholar 

  31. Kaim AH, Weber B, Kurrer MO et al (2002) Autoradiographic quantification of 18F-FDG uptake in experimental soft-tissue abscesses in rats. Radiology 223:446–451

    Article  PubMed  Google Scholar 

  32. Zhao S, Kuge Y, Kohanawa M et al (2008) Usefulness of 11C-methionine for differentiating tumors from granulomas in experimental rat models: a comparison with 18F-FDG and 18F-FLT. J Nucl Med 49:135–141

    Article  CAS  PubMed  Google Scholar 

  33. Terakawa Y, Tsuyuguchi N, Iwai Y et al (2008) Diagnostic accuracy of 11C-methionine PET for differentiation of recurrent brain tumors from radiation necrosis after radiotherapy. J Nucl Med 49:694–699

    Article  PubMed  Google Scholar 

  34. Ohtsuki S, Uchida Y, Kubo Y, Terasaki T (2011) Quantitative targeted absolute proteomics-based ADME research as a new path to drug discovery and development: methodology, advantages, strategy, and prospects. J Pharm Sci 100:3547–3559

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Mr. Shiro Yoshida and Ms. Sachiko Naito for their assistance in animal treatments and cell cultures, respectively.

Conflict of interest

Shuntaro Oka, Hiroyuki Okudaira, Masahiro Ono, and Yoshifumi Shirakami are employees of Nihon Medi-Physics Co. Ltd. Mark M. Goodman and Emory University have patent rights for anti-[18F]FACBC and are eligible to receive royalties on anti-[18F]FACBC from Nihon Medi-Physics Co. Ltd. Mark M. Goodman, David M. Schuster, and Keiichi Kawai have ongoing research collaborations with Nihon Medi-Physics Co. Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuntaro Oka.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 836 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oka, S., Okudaira, H., Ono, M. et al. Differences in Transport Mechanisms of trans-1-Amino-3-[18F]Fluorocyclobutanecarboxylic Acid in Inflammation, Prostate Cancer, and Glioma Cells: Comparison with l-[Methyl-11C]Methionine and 2-Deoxy-2-[18F]Fluoro-d-Glucose. Mol Imaging Biol 16, 322–329 (2014). https://doi.org/10.1007/s11307-013-0693-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-013-0693-0

Key words

Navigation