Skip to main content

Advertisement

Log in

Comparison of Three Dimeric 18F-AlF-NOTA-RGD Tracers

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

RGD peptide-based radiotracers are well established as integrin αvβ3 imaging probes to evaluate tumor angiogenesis or tissue remodeling after ischemia or infarction. In order to optimize the labeling process and pharmacokinetics of the imaging probes, we synthesized three dimeric RGD peptides with or without PEGylation and performed in vivo screening.

Procedures

Radiolabeling was achieved through the reaction of F-18 aluminum–fluoride complex with the cyclic chelator, 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA). Three imaging probes were synthesized as 18F-AlF-NOTA-E[c(RGDfK)]2, 18F-AlF-NOTA-PEG4-E[c(RGDfK)]2, and 18F-AlF-NOTA-E[PEG4-c(RGDfk)]2. The receptor binding affinity was determined by competitive cell binding assay, and the stability was evaluated by mouse serum incubation. Tumor uptake and whole body distribution of the three tracers were compared through direct tissue sampling and PET quantification of U87MG tumor-bearing mice.

Results

All three compounds remained intact after 120 min incubation with mouse serum. They all had a rapid and relatively high tracer uptake in U87MG tumors with good target-to-background ratios. Compared with the other two tracers, 18F-AlF-NOTA-E[PEG4-c(RGDfk)]2 had the highest tumor uptake and the lowest accumulation in the liver. The integrin receptor specificity was confirmed by co-injection of unlabeled dimeric RGD peptide.

Conclusion

The rapid one-step radiolabeling strategy by the complexation of 18F-aluminum fluoride with NOTA-peptide conjugates was successfully applied to synthesize three dimeric RGD peptides. Among the three probes developed, 18F-AlF-NOTA-E[PEG4-c(RGDfk)]2 with relatively low liver uptake and high tumor accumulation appears to be a promising candidate for further translational research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. Yang M, Gao H, Yan Y et al (2011) PET imaging of early response to the tyrosine kinase inhibitor ZD4190. Eur J Nucl Med Mol Imaging 38:1237–1247

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Niu G, Chen X (2011) Why integrin as a primary target for imaging and therapy. Theranostics 1:30–47

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Brooks PC, Montgomery AM, Rosenfeld M et al (1994) Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79:1157–1164

    Article  CAS  PubMed  Google Scholar 

  4. Cai W, Chen X (2008) Multimodality molecular imaging of tumor angiogenesis. J Nucl Med 49(Suppl 2):113S–128S

    Article  CAS  PubMed  Google Scholar 

  5. Backer MV, Backer JM (2012) Imaging key biomarkers of tumor angiogenesis. Theranostics 2:502–515

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Noiri E, Goligorsky MS, Wang GJ et al (1996) Biodistribution and clearance of 99mTc-labeled Arg-Gly-Asp (RGD) peptide in rats with ischemic acute renal failure. J Am Soc Nephrol 7:2682–2688

    CAS  PubMed  Google Scholar 

  7. Ahmadi M, Sancey L, Briat A et al (2008) Chemical and biological evaluations of an (111)in-labeled RGD-peptide targeting integrin alpha(V) beta(3) in a preclinical tumor model. Cancer Biother Radiopharm 23:691–700

    Article  CAS  PubMed  Google Scholar 

  8. Jeong JM, Hong MK, Chang YS et al (2008) Preparation of a promising angiogenesis PET imaging agent: 68Ga-labeled c(RGDyK)-isothiocyanatobenzyl-1,4,7-triazacyclononane-1,4,7-triacetic acid and feasibility studies in mice. J Nucl Med 49:830–836

    Article  CAS  PubMed  Google Scholar 

  9. Li ZB, Chen K, Chen X (2008) (68)Ga-labeled multimeric RGD peptides for microPET imaging of integrin alpha(v)beta (3) expression. Eur J Nucl Med Mol Imaging 35:1100–1108

    Article  CAS  PubMed  Google Scholar 

  10. Chen X, Park R, Shahinian AH et al (2004) 18F-labeled RGD peptide: initial evaluation for imaging brain tumor angiogenesis. Nucl Med Biol 31:179–189

    Article  CAS  PubMed  Google Scholar 

  11. Chen X, Liu S, Hou Y et al (2004) MicroPET imaging of breast cancer alphav-integrin expression with 64Cu-labeled dimeric RGD peptides. Mol Imaging Biol 6:350–359

    Article  PubMed  Google Scholar 

  12. Lang L, Li W, Jia HM et al (2011) New methods for labeling RGD peptides with bromine-76. Theranostics 1:341–353

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Jacobson O, Zhu L, Niu G et al (2011) MicroPET imaging of integrin alpha(v)beta (3) expressing tumors using (89)Zr-RGD peptides. Mol Imaging Biol 13(6):1224–1233

    Article  PubMed Central  PubMed  Google Scholar 

  14. Zhang X, Xiong Z, Wu Y et al (2006) Quantitative PET imaging of tumor integrin alphavbeta3 expression with 18F-FRGD2. J Nucl Med 47:113–121

    CAS  PubMed  Google Scholar 

  15. Sun X, Yan Y, Liu S et al (2011) 18F-FPPRGD2 and 18F-FDG PET of response to Abraxane therapy. J Nucl Med 52:140–146

    Article  PubMed  Google Scholar 

  16. Liu S, Liu Z, Chen K et al (2010) 18F-labeled galacto and PEGylated RGD dimers for PET imaging of alphavbeta3 integrin expression. Mol Imaging Biol 12:530–538

    Article  PubMed Central  PubMed  Google Scholar 

  17. Chin FT, Shen B, Liu S et al (2012) First experience with clinical-grade [(18)F]FPP(RGD) (2): an automated multi-step radiosynthesis for clinical PET studies. Mol Imaging Biol 14(1):88–95

    Article  PubMed Central  PubMed  Google Scholar 

  18. Mittra ES, Goris ML, Iagaru AH et al (2011) Pilot pharmacokinetic and dosimetric studies of (18)F-FPPRGD2: a PET radiopharmaceutical agent for imaging alpha(v)beta(3) integrin levels. Radiology 260:182–191

    Article  PubMed Central  PubMed  Google Scholar 

  19. Lang L, Li W, Guo N et al (2011) Comparison study of [18F]FAl-NOTA-PRGD2, [18F]FPPRGD2, and [68Ga]Ga-NOTA-PRGD2 for PET imaging of U87MG tumors in mice. Bioconjugate chemistry 22:2415–2422

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. McBride WJ, D’Souza CA, Sharkey RM et al (2010) Improved F-18 labeling of peptides with a fluoride-aluminum-chelate complex. Bioconjugate chemistry 21:1331–1340

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. McBride WJ, Sharkey RM, Karacay H et al (2009) A novel method of F-18 radiolabeling for PET. J Nucl Med 50:991–998

    Article  CAS  PubMed  Google Scholar 

  22. Lang L, Li W, Guo N et al (2011) Comparison study of [18F]FAl-NOTA-PRGD2, [18F]FPPRGD2, and [68Ga]Ga-NOTA-PRGD2 for PET imaging of U87MG tumors in mice. Bioconjugate chemistry 22:2415–2422

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Gao H, Lang L, Guo N et al (2012) PET imaging of angiogenesis after myocardial infarction/reperfusion using a one-step labeled integrin-targeted tracer 18F-AlF-NOTA-PRGD2. Eur J Nucl Med Mol Imaging 39:683–692

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Guo N, Lang L, Li W et al (2012) Quantitative analysis and comparison study of [18F]AlF-NOTA-PRGD2, [18F]FPPRGD2 and [68Ga]Ga-NOTA-PRGD2 using a reference tissue model. PLoS One 7:e37506

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Haubner R, Wester HJ, Burkhart F et al (2001) Glycosylated RGD-containing peptides: tracer for tumor targeting and angiogenesis imaging with improved biokinetics. J Nucl Med 42:326–336

    CAS  PubMed  Google Scholar 

  26. Beer AJ, Kessler H, Wester HJ, Schwaiger M (2011) PET imaging of integrin alphaVbeta3 expression. Theranostics 1:48–57

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Shi J, Kim YS, Zhai S, Liu Z, Chen X, Liu S (2009) Improving tumor uptake and pharmacokinetics of (64)Cu-labeled cyclic RGD peptide dimers with Gly(3) and PEG(4) linkers. Bioconjugate chemistry 20:750–759

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Liu Z, Niu G, Shi J, Liu S, Wang F, Chen X (2009) (68)Ga-labeled cyclic RGD dimers with Gly3 and PEG4 linkers: promising agents for tumor integrin alphavbeta3 PET imaging. Eur J Nucl Med Mol Imaging 36:947–957

    Article  CAS  PubMed  Google Scholar 

  29. Zhou Y, Shao G, Liu S (2012) Monitoring breast tumor lung metastasis by U-SPECT-II/CT with an integrin alpha(v)beta(3)-targeted radiotracer(99m)Tc-3P-RGD(2). Theranostics 2:577–588

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Shi J, Zhou Y, Chakraborty S et al (2011) Evaluation of in-labeled cyclic RGD peptides: effects of peptide and linker multiplicity on their tumor uptake, excretion kinetics and metabolic stability. Theranostics 1:322–340

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Zhou Y, Chakraborty S, Liu S (2011) Radiolabeled cyclic RGD peptides as radiotracers for imaging tumors and thrombosis by SPECT. Theranostics 1:58–82

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Liu S, Liu H, Ren G, Kimura RH, Cochran JR, Cheng Z (2011) PET imaging of integrin positive tumors using F labeled knottin peptides. Theranostics 1:403–412

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Tomayko MMRC (1989) Determination of subcutaneous tumor size in athymic (nude) mice. Cancer Chemother Pharmacol 24:148–154

    Article  CAS  PubMed  Google Scholar 

  34. Euhus DMHC, LaRegina MC, Johnson FE (1986) Tumor measurement in the nude mouse. J Surg Oncol 31:229–234

    Article  CAS  PubMed  Google Scholar 

  35. Kenny LM, Coombes RC, Oulie I et al (2008) Phase I trial of the positron-emitting Arg-Gly-Asp (RGD) peptide radioligand 18F-AH111585 in breast cancer patients. Journal of nuclear medicine 49:879–886

    Article  PubMed  Google Scholar 

  36. Beer AJ, Haubner R, Goebel M et al (2005) Biodistribution and pharmacokinetics of the alphavbeta3-selective tracer 18F-galacto-RGD in cancer patients. Journal of nuclear medicine 46:1333–1341

    CAS  PubMed  Google Scholar 

  37. Harris JM, Chess RB (2003) Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov 2:214–221

    Article  CAS  PubMed  Google Scholar 

  38. Gagnon MK, Hausner SH, Marik J, Abbey CK, Marshall JF, Sutcliffe JL (2009) High-throughput in vivo screening of targeted molecular imaging agents. Proc Natl Acad Sci U S A 106:17904–17909

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Bass LA, Wang M, Welch MJ, Anderson CJ (2000) In vivo transchelation of copper-64 from TETA-octreotide to superoxide dismutase in rat liver. Bioconjugate chemistry 11:527–532

    Article  CAS  PubMed  Google Scholar 

  40. Deshpande SV, Subramanian R, McCall MJ, DeNardo SJ, DeNardo GL, Meares CF (1990) Metabolism of indium chelates attached to monoclonal antibody: minimal transchelation of indium from benzyl-EDTA chelate in vivo. Journal of nuclear medicine 31:218–224

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Basic Research Program of China (973 Program) (No. 2013CB733800, 2013CB733802, 2014CB744503), the National Science Foundation of China (NSFC) (81201129, 81371596, 51373144 and 81101068), and the Intramural Research Program of the National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH).

Conflict of Interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingguo Xie or Xiaoyuan Chen.

Additional information

Jinxia Guo and Lixin Lang contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 85.5 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, J., Lang, L., Hu, S. et al. Comparison of Three Dimeric 18F-AlF-NOTA-RGD Tracers. Mol Imaging Biol 16, 274–283 (2014). https://doi.org/10.1007/s11307-013-0668-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-013-0668-1

Key words

Navigation