Skip to main content
Log in

[68Ga]-Albumin-PET in the Monitoring of Left Ventricular Function in Murine Models of Ischemic and Dilated Cardiomyopathy: Comparison with Cardiac MRI

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study is to evaluate left ventricular functional parameters in healthy mice and in different murine models of cardiomyopathy with the novel blood pool (BP) positron emission tomography (PET) tracer [68Ga]-albumin.

Procedures

ECG-gated microPET examinations were obtained in healthy mice, and mice with dilative (DCM) and ischemic cardiomyopathy (ICM) using the novel BP tracer [68Ga]-albumin (AlbBP), as well as [18F]-FDG microPET. Cine-magnetic resonance imaging (MRI) examination performed on a clinical 1.5-T MRI provided the reference standard measurements.

Results

When considering the combined group of healthy controls, DCM and ICM AlbBP-PET significantly overestimated the magnitudes of EDV (AlbBP, 181 ± 86 μl; cine-MRI, 125 ± 80 μl; P < 0.001) and ESV (AlbBP, 136 ± 92 μl; cine-MRI, 96 ± 77 μl; P < 0.001), whereas the EF (AlbBP, 31 ± 16 %; cine-MRI, 33 ± 21 %; P = 0.910) matched closely to cine-MRI results, as did findings with [18F]-FDG. High correlations were found between the measured cardiac parameters (EDV: R = 0.978, ESV: R = 0.989, and LVEF: R = 0.992).

Conclusions

Measuring left ventricular function in mice with [68Ga]-albumin BP PET is feasible and showed a high correlation compared to cine-MRI, which was used as a reference standard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Brunner S, Todica A, Boning G et al (2012) Left ventricular functional assessment in murine models of ischemic and dilated cardiomyopathy using [18F]FDG-PET: comparison with cardiac MRI and monitoring erythropoietin therapy. EJNMMI Res 2:43

    Article  PubMed  Google Scholar 

  2. Brunner S, Weinberger T, Huber BC et al (2012) The cardioprotective effects of parathyroid hormone are independent of endogenous granulocyte-colony stimulating factor release. Cardiovasc Res 93:330–339

    Article  PubMed  CAS  Google Scholar 

  3. Brunner S, Zaruba MM, Huber B et al (2008) Parathyroid hormone effectively induces mobilization of progenitor cells without depletion of bone marrow. Exp Hematol 36:1157–1166

    Article  PubMed  CAS  Google Scholar 

  4. Huber BC, Brunner S, Segeth A et al (2011) Parathyroid hormone is a DPP-IV inhibitor and increases SDF-1-driven homing of CXCR4(+) stem cells into the ischaemic heart. Cardiovasc Res 90:529–537

    Article  PubMed  CAS  Google Scholar 

  5. Huber BC, Fischer R, Brunner S et al (2010) Comparison of parathyroid hormone and G-CSF treatment after myocardial infarction on perfusion and stem cell homing. Am J Physiol Heart Circ Physiol 298:H1466–1471

    Article  PubMed  CAS  Google Scholar 

  6. Zaruba MM, Huber BC, Brunner S et al (2008) Parathyroid hormone treatment after myocardial infarction promotes cardiac repair by enhanced neovascularization and cell survival. Cardiovasc Res 77:722–731

    Article  PubMed  CAS  Google Scholar 

  7. Lorenz JN, Robbins J (1997) Measurement of intraventricular pressure and cardiac performance in the intact closed-chest anesthetized mouse. Am J Physiol 272:H1137–1146

    PubMed  CAS  Google Scholar 

  8. Tanaka N, Dalton N, Mao L et al (1996) Transthoracic echocardiography in models of cardiac disease in the mouse. Circulation 94:1109–1117

    Article  PubMed  CAS  Google Scholar 

  9. Hacker M, Hoyer X, Kupzyk S et al (2006) Clinical validation of the gated blood pool SPECT QBS processing software in congestive heart failure patients: correlation with MUGA, first-pass RNV and 2D-echocardiography. Int J Cardiovasc Imaging 22:407–416

    Article  PubMed  Google Scholar 

  10. Hacker M, Stork S, Stratakis D et al (2003) Relationship between right ventricular ejection fraction and maximum exercise oxygen consumption: a methodological study in chronic heart failure patients. J Nucl Cardiol 10:644–649

    Article  PubMed  Google Scholar 

  11. Sibille L, Bouallegue FB, Bourdon A et al (2011) Comparative values of gated blood-pool SPECT and CMR for ejection fraction and volume estimation. Nucl Med Commun 32:121–128

    Article  PubMed  Google Scholar 

  12. Nichols KJ, Van Tosh A, Wang Y, Palestro CJ, Reichek N (2009) Validation of gated blood-pool SPECT regional left ventricular function measurements. J Nucl Med 50:53–60

    Article  PubMed  Google Scholar 

  13. Nichols K, Saouaf R, Ababneh AA et al (2002) Validation of SPECT equilibrium radionuclide angiographic right ventricular parameters by cardiac magnetic resonance imaging. J Nucl Cardiol 9:153–160

    Article  PubMed  Google Scholar 

  14. Kreissl MC, Wu HM, Stout DB et al (2006) Noninvasive measurement of cardiovascular function in mice with high-temporal-resolution small-animal PET. J Nucl Med 47:974–980

    PubMed  Google Scholar 

  15. Yang Y, Rendig S, Siegel S, Newport DF, Cherry SR (2005) Cardiac PET imaging in mice with simultaneous cardiac and respiratory gating. Phys Med Biol 50:2979–2989

    Article  PubMed  Google Scholar 

  16. Stegger L, Heijman E, Schafers KP et al (2009) Quantification of left ventricular volumes and ejection fraction in mice using PET, compared with MRI. J Nucl Med 50:132–138

    Article  PubMed  Google Scholar 

  17. Gropler RJ, Beanlands RS, Dilsizian V et al (2010) Imaging myocardial metabolic remodeling. J Nucl Med 51(1):88S–101S

    Article  PubMed  CAS  Google Scholar 

  18. Higuchi T, Nekolla SG, Jankaukas A et al (2007) Characterization of normal and infarcted rat myocardium using a combination of small-animal PET and clinical MRI. J Nucl Med 48:288–294

    PubMed  Google Scholar 

  19. Wangler C, Wangler B, Lehner S et al (2011) A universally applicable 68Ga-labeling technique for proteins. J Nucl Med 52:586–591

    Article  PubMed  CAS  Google Scholar 

  20. Deindl E, Zaruba MM, Brunner S et al (2006) G-CSF administration after myocardial infarction in mice attenuates late ischemic cardiomyopathy by enhanced arteriogenesis. FASEB J 20:956–958

    Article  PubMed  CAS  Google Scholar 

  21. Kandolf R, Hofschneider PH (1985) Molecular cloning of the genome of a cardiotropic Coxsackie B3 virus: full-length reverse-transcribed recombinant cDNA generates infectious virus in mammalian cells. Proc Natl Acad Sci U S A 82:4818–4822

    Article  PubMed  CAS  Google Scholar 

  22. Rutschow S, Leschka S, Westermann D et al (2010) Left ventricular enlargement in coxsackievirus-B3 induced chronic myocarditis—ongoing inflammation and an imbalance of the matrix degrading system. Eur J Pharmacol 630:145–151

    Article  PubMed  CAS  Google Scholar 

  23. Germano G, Kiat H, Kavanagh PB et al (1995) Automatic quantification of ejection fraction from gated myocardial perfusion SPECT. J Nucl Med 36:2138–2147

    PubMed  CAS  Google Scholar 

  24. Germano G, Kavanagh PB, Slomka PJ et al (2007) Quantitation in gated perfusion SPECT imaging: the Cedars-Sinai approach. J Nucl Cardiol 14:433–454

    Article  PubMed  Google Scholar 

  25. Van Kriekinge SD, Berman DS, Germano G (1999) Automatic quantification of left ventricular ejection fraction from gated blood pool SPECT. J Nucl Cardiol 6:498–506

    Article  PubMed  Google Scholar 

  26. Croteau E, Benard F, Cadorette J et al (2003) Quantitative gated PET for the assessment of left ventricular function in small animals. J Nucl Med 44:1655–1661

    PubMed  Google Scholar 

  27. Nekolla SG, Miethaner C, Nguyen N, Ziegler SI, Schwaiger M (1998) Reproducibility of polar map generation and assessment of defect severity and extent assessment in myocardial perfusion imaging using positron emission tomography. Eur J Nucl Med 25:1313–1321

    Article  PubMed  CAS  Google Scholar 

  28. Wollenweber T, Zach C, Rischpler C et al (2010) Myocardial perfusion imaging is feasible for infarct size quantification in mice using a clinical single-photon emission computed tomography system equipped with pinhole collimators. Mol Imaging Biol 12:427–434

    Article  PubMed  Google Scholar 

  29. Bland JM, Altman DG (1999) Measuring agreement in method comparison studies. Stat Methods Med Res 8:135–160

    Article  PubMed  CAS  Google Scholar 

  30. Hoffend J, Mier W, Schuhmacher J et al (2005) Gallium-68-DOTA-albumin as a PET blood-pool marker: experimental evaluation in vivo. Nucl Med Biol 32:287–292

    Article  PubMed  CAS  Google Scholar 

  31. Chin BB, Metzler SD, Lemaire A et al (2007) Left ventricular functional assessment in mice: feasibility of high spatial and temporal resolution ECG-gated blood pool SPECT. Radiology 245:440–448

    Article  PubMed  Google Scholar 

  32. Schinkel AF, Poldermans D, Elhendy A, Bax JJ (2007) Assessment of myocardial viability in patients with heart failure. J Nucl Med 48:1135–1146

    Article  PubMed  Google Scholar 

  33. Wangler C, Wangler B, Lehner S et al (2011) A universally applicable 68Ga-labeling technique for proteins. J Nucl Med 52:586–591

    Article  PubMed  CAS  Google Scholar 

  34. Jodal L, Le Loirec C, Champion C (2012) Positron range in PET imaging: an alternative approach for assessing and correcting the blurring. Phys Med Biol 57:3931–3943

    Article  PubMed  CAS  Google Scholar 

  35. Disselhorst JA, Brom M, Laverman P et al (2010) Image-quality assessment for several positron emitters using the NEMA NU 4–2008 standards in the Siemens Inveon small-animal PET scanner. J Nucl Med 51:610–617

    Article  PubMed  Google Scholar 

  36. Cheng JC, Shoghi K, Laforest R (2012) Quantitative accuracy of MAP reconstruction for dynamic PET imaging in small animals. Med Phys 39:1029–1041

    Article  PubMed  Google Scholar 

  37. Hesse B, Lindhardt TB, Acampa W et al (2008) EANM/ESC guidelines for radionuclide imaging of cardiac function. Eur J Nucl Med Mol Imaging 35:851–885

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Financial support was provided by the Fritz-Bender-Stiftung and the Else Kröner-Fresenius-Stiftung.

Disclosures

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Hacker.

Additional information

Andrei Todica and Stefan Brunner contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Todica, A., Brunner, S., Böning, G. et al. [68Ga]-Albumin-PET in the Monitoring of Left Ventricular Function in Murine Models of Ischemic and Dilated Cardiomyopathy: Comparison with Cardiac MRI. Mol Imaging Biol 15, 441–449 (2013). https://doi.org/10.1007/s11307-013-0618-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-013-0618-y

Key words

Navigation