Skip to main content
Log in

Usefulness of 11C-Choline Positron Emission Tomography for Genital Chlamydial Infection Assessment in a Balb/c Murine Model

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study is to explore the feasibility of 11C-Choline PET in the assessment of the degree of inflammation in the Chlamydia muridarum genital infection model.

Procedures

Forty female Balb/c mice received 2.5 mg of medroxyprogesterone acetate i.m. 9 and 2 days prior to the infection: 21 mice were infected by C. muridarum into the vaginal vault, 12 mice were treated with inactivated chlamydiae, and 7 mice were SPG buffer-treated as negative controls. Three healthy control mice were not treated with progesterone. Mice in each category were randomly subdivided in two groups: (1) sacrificed at 5, 10, 15, and 20 days for histological analysis and (2) undergoing 11C-Choline PET at days 5, 10, and 20 post-infection (20 MBq of 11C-Choline, uptake time of 10 min, acquisition through a small-animal PET tomograph for 15 min).

Results

Infected animals showed a significantly higher standardized uptake value than both controls and animals inoculated with heat-inactivated chlamydiae in each PET scan (P < 0.05). All organs of the infected animals had scores of inflammation ranging between 2 and 3 at day 5, decreasing to 1–2 at day 20.

Conclusions

This preliminary result demonstrated that 11C-Choline PET can highlight a specific proliferation mechanism of inflammatory cells induced by C. muridarum, thanks to a very high sensitivity in detecting very small amounts of tracer in inflammatory cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Beagley KW, Timms P (2000) Chlamydia trachomatis infection: incidence, health costs and prospects for vaccine development. J Reprod Immunol 48:47–68

    Article  PubMed  CAS  Google Scholar 

  2. Paavonen J, Eggert-Kruse W (1999) Chlamydia trachomatis: impact on human reproduction. Hum Reprod Update 5:433–447

    Article  PubMed  CAS  Google Scholar 

  3. Rein DB, Kassler WJ, Irwin KL, Rabiee L (2000) Direct medical cost of pelvic inflammatory disease and its sequelae: decreasing but still substantial. Obstet Gynecol 95:397–402

    Article  PubMed  CAS  Google Scholar 

  4. Sweet RL, Gibbs RS (2009) Pelvic inflammatory disease. In: Sweet RL, Gibbs RS (eds) Infectious diseases of the female genital tract. Lippincott, Philadelphia, pp 220–244

    Google Scholar 

  5. Sweet RL (2012) Pelvic inflammatory disease: current concepts of diagnosis and management. Curr Infect Dis Rep 14(2):194–203

    Article  Google Scholar 

  6. Sweet RL (2011) Treatment of acute pelvic inflammatory disease. Infect Dis Obstet Gynecol. doi:10.1155/2011/561909

  7. Darville T, Hiltke TJ (2010) Pathogenesis of genital tract disease due to Chlamydia trachomatis. J Infect Dis 201(suppl 2):114–125

    Article  Google Scholar 

  8. Kiviat NB, Wolner-Hanssen P, Eschenbach DA et al (1990) Endometrial histopathology in patients with culture-proved upper genital tract infection and laparoscopically diagnosed acute salpingitis. Am J Surg Pathol 14:167–175

    Article  PubMed  CAS  Google Scholar 

  9. Miyairi I, Ramsey KH, Patton DL (2010) Duration of untreated chlamydial genital infection and factors associated with clearance: review of animal studies. J Infect Dis 201(suppl 2):96–103

    Article  Google Scholar 

  10. Bell JD, Bergin IL, Schmidt K et al (2011) Nonhuman primate models used to study pelvic inflammatory disease caused by Chlamydia trachomatis. Infect Dis Obstet Gynecol. doi:10.1155/2011/675360

  11. Nelson DE, Virok DP, Wood H et al (2005) Chlamydial IFN-gamma immune evasion is linked to host infection tropism. Proc Natl Acad Sci U S A 102:10658–10663

    Article  PubMed  CAS  Google Scholar 

  12. Barron AL, White HJ, Rank RG, Soloff BL, Moses EB (1981) A new animal model for the study of Chlamydia trachomatis genital infections: infection of mice with the agent of mouse pneumonitis. J Infect Dis 143:63–66

    Article  PubMed  CAS  Google Scholar 

  13. Stephens RS, Kalman S, Lammel C et al (1998) Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 282:754–759

    Article  PubMed  CAS  Google Scholar 

  14. Cho HJ, Kim HK, Suh JH et al (2008) Fitz-Hugh–Curtis syndrome: CT findings of three cases. Emerg Radiol 15:43–46

    Article  PubMed  Google Scholar 

  15. Jaiyeoba O, Soper DE (2011) A practical approach to the diagnosis of pelvic inflammatory disease. Infect Dis Obstet Gynecol. doi:10.1155/2011/753037

  16. Nanni C, Marangoni A, Quarta C et al (2009) Small animal PET for the evaluation of an animal model of genital infection. Clin Physiol Funct Imaging 29:187–192

    Article  PubMed  Google Scholar 

  17. Zeisel SH (1993) Choline phospholipids: signal transduction and carcinogenesis. FASEB J 7:551–557

    PubMed  CAS  Google Scholar 

  18. Nanni C, Fantini L, Nicolini S, Fanti S (2010) Non FDG PET. Clin Radiol 65:536–548

    Article  PubMed  CAS  Google Scholar 

  19. Torizuka T, Kanno T, Futatsubashi M et al (2003) Imaging of gynecologic tumors: comparison of (11)C-choline PET with (18)F-FDG PET. J Nucl Med 44:1051–1056

    PubMed  CAS  Google Scholar 

  20. Wyss MT, Weber B, Honer M et al (2004) 18F-choline in experimental soft tissue infection assessed with autoradiography and high-resolution PET. Eur J Nucl Med Mol Imaging 31:312–316

    Article  PubMed  CAS  Google Scholar 

  21. Roivainen A, Parkkola R, Yli-Kerttula T et al (2003) Use of positron emission tomography with methyl-11C-choline and 2-18F-fluoro-2-deoxy-D-glucose in comparison with magnetic resonance imaging for the assessment of inflammatory proliferation of synovium. Arthritis Reum 48:3077–3084

    Article  CAS  Google Scholar 

  22. Matter CM, Wyss MT, Meier P et al (2006) 18F-choline images murine atherosclerotic plaques ex vivo. Arterioscler Thromb Vasc Biol 26:584–589

    Article  PubMed  CAS  Google Scholar 

  23. Laitinen IE, Luoto P, Någren K et al (2010) Uptake of 11C-choline in mouse atherosclerotic plaques. J Nucl Med 51:798–802

    Article  PubMed  Google Scholar 

  24. Kato K, Schober O, Ikeda M et al (2009) Evaluation and comparison of 11C-choline uptake and calcification in aortic and common carotid arterial walls with combined PET/CT. Eur J Nucl Med Mol Imaging 36:1622–1628

    Article  PubMed  CAS  Google Scholar 

  25. Donati M, Sambri V, Comanducci M et al (2003) DNA immunization with pgp3 gene of Chlamydia trachomatis inhibits the spread of chlamydial infection from the lower to the upper genital tract in C3H/HeN mice. Vaccine 21:1089–1093

    Article  PubMed  CAS  Google Scholar 

  26. Pascali G, D'Antonio L, Bovone P et al (2009) Optimization of automated large scale production of [(18F)]fluoroethylcholine for PET prostate cancer imaging. Nucl Med Biol 36:569–574

    Article  PubMed  CAS  Google Scholar 

  27. Marangoni A, Donati M, Cavrini F et al (2006) Chlamydia pneumoniae replicates in Kupffer cells in mouse model of liver infection. World J Gastroenterol 12:6453–6457

    PubMed  Google Scholar 

  28. Wiesenfeld HC, Hillier SL, Krohn MA et al (2002) Lower genital tract infection and endometritis: insight into subclinical pelvic inflammatory disease. Obstet Gynecol 100:456–463

    Article  PubMed  Google Scholar 

  29. Wiesenfeld HC, Sweet RL, Ness RB et al (2005) Comparison of acute and subclinical pelvic inflammatory disease. Sex Transm Dis 32:400–405

    Article  PubMed  Google Scholar 

  30. Nishie A, Yoshimitsu K, Irie H et al (2003) Fitz-Hugh–Curtis syndrome. J Comput Assist Tomogr 27:786–791

    Article  PubMed  Google Scholar 

  31. Tsujikawa T, Tsuchida T, Yoshida Y et al (2011) Role of PET/CT in gynecological tumors based on the revised FIGO staging classification. Clin Nucl Med 36:114–118

    Article  Google Scholar 

  32. Hashefi M, Curiel R (2011) Future and upcoming non-neoplastic applications of PET/CT imaging. Ann N Y Acad Sci 1228:167–174

    Article  PubMed  CAS  Google Scholar 

  33. Henriksen G, Herz M, Hauser A et al (2004) Synthesis and preclinical evaluation of the choline transport tracer deshydroxy-[18F]fluorocholine ([18F]dOC). Nucl Med Biol 31:851–858

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonella Marangoni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marangoni, A., Nanni, C., Quarta, C. et al. Usefulness of 11C-Choline Positron Emission Tomography for Genital Chlamydial Infection Assessment in a Balb/c Murine Model. Mol Imaging Biol 15, 450–455 (2013). https://doi.org/10.1007/s11307-013-0612-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-013-0612-4

Key words

Navigation