Skip to main content

Advertisement

Log in

New Frontiers in the Design and Synthesis of Imaging Probes for PET Oncology: Current Challenges and Future Directions

  • Review Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Despite being developed over 30 years ago, 2-deoxy-2-[18F]fluoro-d-glucose remains the most frequently used radiotracer in PET oncology. In the last decade, interest in new and more specific radiotracers for imaging biological processes of oncologic interest has increased exponentially. This review summarizes the strategies underlying the development of those probes together with their validation and status of clinical translation; a brief summary of new radiochemistry strategies applicable to PET imaging is also included. The article finishes with a consideration of the challenges imaging scientists must overcome to bring about increased adoption of PET as a diagnostic or pharmacologic tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 1
Scheme 2
Scheme 3

Similar content being viewed by others

References

  1. Aboagye EO (2010) The future of imaging: Developing the tools for monitoring response to therapy in oncology: The 2009 Sir james MacKenzie davidson memorial lecture. Brit J Radiol 83(994):814–822

    Article  PubMed  CAS  Google Scholar 

  2. Vallabhajosula S (2007) (18)F-labeled positron emission tomographic radiopharmaceuticals in oncology: An overview of radiochemistry and mechanisms of tumor localization. Semin Nucl Med 37(6):400–419

    Article  PubMed  Google Scholar 

  3. Fass L (2008) Imaging and cancer: A review. Mol Oncol 2(2):115–152

    Article  PubMed  Google Scholar 

  4. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: The next generation. Cell 144(5):646–674

    Article  PubMed  CAS  Google Scholar 

  5. Pal A, Balatoni JA, Mukhopadhyay U et al (2011) Radiosynthesis and initial in vitro evaluation of [18F]F-PEG6-IPQA—a novel PET radiotracer for imaging EGFR expression-activity in lung carcinomas. Mol Imaging Biol 13(5):853–861

    Article  PubMed  Google Scholar 

  6. Yeh HH, Ogawa K, Balatoni J et al (2011) Molecular imaging of active mutant L858R EGF receptor (EGFR) kinase-expressing nonsmall cell lung carcinomas using PET/CT. Proc Natl Acad Sci USA 108(4):1603–1608

    Article  PubMed  CAS  Google Scholar 

  7. Sharma R, Aboagye E (2011) Development of radiotracers for oncology—the interface with pharmacology. Brit J Pharmacol 163(8):1565–1585

    Article  CAS  Google Scholar 

  8. Matthews PM, Rabiner EA, Passchier J, Gunn RN (2012) Positron emission tomography molecular imaging for drug development. Brit J Clin Pharmacol 73(2):175–186

    Article  CAS  Google Scholar 

  9. Chopra A, Shan L, Eckelman WC, Leung K, Menkens AE (2011) Important parameters to consider for the characterization of PET and SPECT imaging probes. Nucl Med Biol 38(8):1079–1084

    Article  PubMed  CAS  Google Scholar 

  10. Haji-Saeid M, Pillai MRA, Ruth TJ, Schlyer DJ, Van den Winkel P, Vora MM (2009) Cyclotron produced radionuclides: physical characteristics and production methods. IAEA Technical Reports Series No. 468. Vienna

  11. Disselhorst JA, Brom M, Laverman P et al (2010) Image-quality assessment for several positron emitters using the NEMA NU 4–2008 standards in the Siemens Inveon small-animal PET scanner. J Nucl Med 51(4):610–617

    Article  PubMed  Google Scholar 

  12. Brooks PC (1996) Role of integrins in angiogenesis. Eur J Cancer 32(14):2423–2429

    Article  Google Scholar 

  13. Dijkgraaf I, Yim C-B, Franssen G et al (2011) PET imaging of αvβ3 integrin expression in tumours with 68Ga-labelled mono-, di- and tetrameric RGD peptides. Eur J Nucl Med Mol Imaging 38(1):128–137

    Article  PubMed  CAS  Google Scholar 

  14. Poethko T, Schottelius M, Thumshirn G et al (2004) Chemoselective pre-conjugate radiohalogenation of unprotected mono- and multimeric peptides via oxime formation. Radiochim Acta 92(4–6):317–327

    Article  CAS  Google Scholar 

  15. Yan Y, Chen K, Yang M, Sun X, Liu S, Chen X (2011) A new 18F-labeled BBN-RGD peptide heterodimer with a symmetric linker for prostate cancer imaging. Amino Acids 41(2):439–447

    Article  PubMed  CAS  Google Scholar 

  16. Glaser M, Morrison M, Solbakken M et al (2008) Radiosynthesis and biodistribution of cyclic RGD peptides conjugated with novel [18f]fluorinated aldehyde-containing prosthetic groups. Bioconj Chem 19(4):951–957

    Article  CAS  Google Scholar 

  17. Kenny LM, Coombes RC, Oulie I et al (2008) Phase I trial of the positron-emitting Arg-Gly-Asp (RGD) peptide radioligand 18F-AH111585 in breast cancer patients. J Nucl Med 49(6):879–886

    Article  PubMed  Google Scholar 

  18. Battle MR, Goggi JL, Allen L, Barnett J, Morrison MS (2011) Monitoring tumor response to antiangiogenic sunitinib therapy with 18F-fluciclatide, an 18F-labeled αvβ3-integrin and αvβ5-integrin imaging agent. J Nucl Med 52(3):424–430

    Article  PubMed  CAS  Google Scholar 

  19. Morrison MS, Ricketts SA, Barnett J, Cuthbertson A, Tessier J, Wedge SR (2009) Use of a novel Arg-Gly-Asp radioligand, 18F-AH111585, to determine changes in tumor vascularity after antitumor therapy. J Nucl Med 50(1):116–122

    Article  PubMed  CAS  Google Scholar 

  20. Solban N, Pål SK, Alok SK, Sung CK, Hasan T (2006) Mechanistic investigation and implications of photodynamic therapy induction of vascular endothelial growth factor in prostate cancer. Cancer Res 66(11):5633–5640

    Article  PubMed  CAS  Google Scholar 

  21. Nagengast WB, de Vries EG, Hospers GA et al (2007) In vivo VEGF imaging with radiolabeled bevacizumab in a human ovarian tumor xenograft. J Nucl Med 48(8):1313–1319

    Article  PubMed  CAS  Google Scholar 

  22. Reed JC (2002) Apoptosis-based therapies. Nat Rev Drug Disc 1:111–121

    Article  CAS  Google Scholar 

  23. Blankenberg FG (2008) Monitoring of treatment-induced apoptosis in oncology with PET and SPECT. Current Pharm Design 14(28):2974–2982

    Article  CAS  Google Scholar 

  24. Eisenhauer EA, Therasse P, Bogaerts J et al (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45(2):228–247

    Article  PubMed  CAS  Google Scholar 

  25. Wahl RL, Jacene H, Kasamon Y, Lodge MA (2009) From RECIST to PERCIST: evolving considerations for PET Response Criteria in Solid Tumors. J Nucl Med 50:S122–S150

    Article  Google Scholar 

  26. Li X, Link JM, Stekhova S et al (2008) Site-specific labeling of annexin V with F-18 for apoptosis imaging. Bioconj Chem 19(8):1684–1688

    Article  CAS  Google Scholar 

  27. Wang F, Fang W, Zhang MR et al (2011) Evaluation of chemotherapy response in VX2 rabbit lung cancer with 18F-labeled C2A domain of synaptotagmin I. J Nucl Med 52(4):592–599

    Article  PubMed  CAS  Google Scholar 

  28. Reshef A, Shirvan A, Akselrod-Ballin A, Wall A, Ziv I (2010) Small-molecule biomarkers for clinical PET imaging of apoptosis. J Nucl Med 51(6):837–840

    Article  PubMed  CAS  Google Scholar 

  29. Damianovich M, Ziv I, Heyman SN et al (2006) ApoSense: a novel technology for functional molecular imaging of cell death in models of acute renal tubular necrosis. Eur J Nucl Med Mol Imaging 33:281–291

    Article  PubMed  Google Scholar 

  30. Cohen A, Shirvan A, Levin G, Grimberg H, Reshef A, Ziv I (2009) From the Gla domain to a novel small-molecule detector of apoptosis. Cell Res.

  31. Grimberg H, Levin G, Shirvan A et al (2009) Monitoring of tumor response to chemotherapy in vivo by a novel small-molecule detector of apoptosis. Apoptosis 14:257–267

    Article  PubMed  CAS  Google Scholar 

  32. Hoglund J, Shirvan A, Antoni G et al (2011) 18F-ML-10, a PET tracer for apoptosis: First human study. J Nucl Med 52(5):720–725

    Article  PubMed  Google Scholar 

  33. Allen AM, Ben-Ami M, Reshef A, et al. (2012) Assessment of response of brain metastases to radiotherapy by PET imaging of apoptosis with (18)F-ML-10. Eur J Nucl Med Mol Imaging

  34. Chu W, Zhang J, Zeng C et al (2005) N-benzylisatin sulfonamide analogues as potent caspase-3 inhibitors: Synthesis, in vitro activity, and molecular modeling studies. J Med Chem 48:7637–7647

    Article  PubMed  CAS  Google Scholar 

  35. Kopka K, Faust A, Keul P et al (2006) 5-Pyrrolidinylsulfonyl isatins as a potential tool for the molecular imaging of caspases in apoptosis. J Med Chem 49:6704–6715

    Article  PubMed  CAS  Google Scholar 

  36. Smith G, Glaser M, Perumal M et al (2008) Design, synthesis and biological characterization of a caspase 3/7 selective isatin labeled with 2-[18F]fluoroethylazide. J Med Chem 51:8057–8067

    Article  PubMed  CAS  Google Scholar 

  37. Chen DL, Zhou D, Chu W et al (2012) Radiolabeled isatin binding to caspase-3 activation induced by anti-Fas antibody. Nucl Med Biol 39(1):137–144

    Article  PubMed  Google Scholar 

  38. Nguyen QD, Smith G, Glaser M, Perumal M, Arstad E, Aboagye EO (2009) Positron emission tomography imaging of drug-induced tumor apoptosis with a caspase-3/7 specific [18F]-labeled isatin sulfonamide. Proc Natl Acad Sci USA 106(38):16375–16380

    Article  PubMed  CAS  Google Scholar 

  39. Nguyen QD, Challapalli A, Smith G, Fortt R, Aboagye EO (2012) Imaging apoptosis with positron emission tomography: ‘Bench to bedside’ development of the caspase-3/7 specific radiotracer [(18)F]ICMT-11. Eur J Cancer 48(4):432–440

    Article  PubMed  CAS  Google Scholar 

  40. Madar I, Ravert H, Nelkin B et al (2007) Characterization of membrane potential-dependent uptake of the novel PET tracer 18F-fluorobenzyl triphenylphosphonium cation. Eur J Nucl Med Mol Imaging 34(12):2057–2065

    Article  PubMed  CAS  Google Scholar 

  41. Madar I, Bencherif B, Lever J et al (2007) Imaging delta- and mu-opioid receptors by PET in lung carcinoma patients. J Nucl Med 48(2):207–213

    PubMed  CAS  Google Scholar 

  42. Madar I, Huang Y, Ravert H et al (2009) Detection and quantification of the evolution dynamics of apoptosis using the PET voltage sensor 18F-fluorobenzyl triphenyl phosphonium. J Nucl Med 50(5):774–780

    Article  PubMed  CAS  Google Scholar 

  43. Kim DY, Kim HJ, Yu KH, Min JJ (2012) Synthesis of [(18)F]-Labeled (6-Fluorohexyl)triphenylphosphonium cation as a potential agent for myocardial imaging using positron emission tomography. Bioconj Chem 23(3):431–437

    Article  CAS  Google Scholar 

  44. Swed A, Eyal S, Madar I, Zohar-Kontante H, Weiss L, Hoffman A (2009) The role of P-glycoprotein in intestinal transport versus the BBB transport of tetraphenylphosphonium. Mol Pharm 6(6):1883–1890

    Article  PubMed  CAS  Google Scholar 

  45. Mendichovszky I, Jackson A (2011) Imaging hypoxia in gliomas. Brit J Radiol 84(Spec No 2):S145–S158

    Article  PubMed  Google Scholar 

  46. Shetty D, Jeong JM, Shim H (2012) Stroma targeting nuclear imaging and radiopharmaceuticals. Int J Mol Imaging 2012:817682

    PubMed  Google Scholar 

  47. Sun X, Niu G, Chan N, Shen B, Chen X (2011) Tumor hypoxia imaging. Mol Imaging Biol 13(3):399–410

    Article  PubMed  Google Scholar 

  48. Barthel H, Wilson H, Collingridge DR et al (2004) In vivo evaluation of [18F]fluoroetanidazole as a new marker for imaging tumour hypoxia with positron emmission tomography. Brit J Cancer 90:2232–2242

    PubMed  CAS  Google Scholar 

  49. Dubois LJ, Lieuwes NG, Janssen MHM et al (2011) Preclinical evaluation and validation of [18F]HX4, a promising hypoxia marker for PET imaging. Proc Natl Acad Sci USA 108(35):14620–14625

    Article  PubMed  CAS  Google Scholar 

  50. van Loon J, Janssen M, Öllers M et al (2010) PET imaging of hypoxia using [18F]HX4: A phase I trial. Eur J Nucl Med Mol Imaging 37(9):1663–1668

    Article  PubMed  Google Scholar 

  51. Holland JP, Aigbirhio FI, Betts HM et al (2006) Functionalized bis(thiosemicarbazonato) complexes of zinc and copper: Synthetic platforms toward site-specific radiopharmaceuticals. Inorg Chem 46(2):465–485

    Article  Google Scholar 

  52. Bayly SR, King RC, Honess DJ et al (2008) In vitro and in vivo evaluations of a hydrophilic 64Cu-bis(thiosemicarbazonato)–glucose conjugate for hypoxia imaging. J Nucl Med 49(11):1862–1868

    Article  PubMed  CAS  Google Scholar 

  53. Kersemans V, Cornelissen B, Hueting R et al (2011) Hypoxia imaging using PET and SPECT: Hypoxia imaging using PET and SPECT: The effects of anesthetic and carrier gas on [64Cu]-ATSM, [99Tc]-HL91 and [18F]-FMISO tumor hypoxia accumulation. PLoS One 6(11):e25911

    Article  PubMed  CAS  Google Scholar 

  54. Toyohara J, Fujibayashi Y (2003) Trends in nucleoside tracers for PET imaging of cell proliferation. Nucl Med Biol 30(7):681–685

    Article  PubMed  Google Scholar 

  55. Bading JR, Shields AF (2008) Imaging of cell proliferation: Status and prospects. J Nucl Med 49(Suppl 2):64S–80S

    Article  PubMed  CAS  Google Scholar 

  56. Paproski RJ, Wuest M, Jans HS et al (2010) Biodistribution and uptake of 3′-deoxy-3′-fluorothymidine in ENT1-knockout mice and in an ENT1-knockdown tumor model. J Nucl Med 51(9):1447–1455

    Article  PubMed  CAS  Google Scholar 

  57. Cobben DC, Elsinga PH, Hoekstra HJ et al (2004) Is 18F-3′-fluoro-3′-deoxy-l-thymidine useful for the staging and restaging of non-small cell lung cancer? J Nucl Med 45(10):1677–1682

    PubMed  CAS  Google Scholar 

  58. Buck AK, Halter G, Schirrmeister H et al (2003) Imaging proliferation in lung tumors with PET: 18F-FLT versus 18F-FDG. J Nucl Med 44(9):1426–1431

    PubMed  CAS  Google Scholar 

  59. Kenny LM, Contractor KB, Stebbing J et al (2009) Altered tissue 3′-deoxy-3′-[18F]fluorothymidine pharmacokinetics in human breast cancer following capecitabine treatment detected by positron emission tomography. Clin Cancer Res 15(21):6649–6657

    Article  PubMed  CAS  Google Scholar 

  60. Leyton J, Alao JP, Da Costa M et al (2006) In vivo biological activity of the histone deacetylase inhibitor LAQ824 is detectable with 3′-deoxy-3′-[18F]fluorothymidine positron emission tomography. Cancer Res 66(15):7621–7629

    Article  PubMed  CAS  Google Scholar 

  61. Rueger MA, Ameli M, Li H et al (2011) [18F]FLT PET for non-invasive monitoring of early response to gene therapy in experimental gliomas. Mol Imaging Biol 13(3):547–557

    Article  PubMed  Google Scholar 

  62. Soloviev D, Lewis D, Honess D, Aboagye E (2012) [(18)F]FLT: an imaging biomarker of tumour proliferation for assessment of tumour response to treatment. Eur J Cancer 48(4):416–424

    Article  PubMed  CAS  Google Scholar 

  63. Perumal M, Pillai RG, Barthel H et al (2006) Redistribution of nucleoside transporters to the cell membrane provides a novel approach for imaging thymidylate synthase inhibition by positron emission tomography. Cancer Res 66(17):8558–8564

    Article  PubMed  CAS  Google Scholar 

  64. Pillai RG, Forster M, Perumal M et al (2008) Imaging pharmacodynamics of the alpha-folate receptor-targeted thymidylate synthase inhibitor BGC 945. Cancer Res 68(10):3827–3834

    Article  PubMed  CAS  Google Scholar 

  65. Toyohara J, Hayashi A, Sato M et al (2002) Rationale of 5-125I-iodo-4′-thio-2′-deoxyuridine as a potential iodinated proliferation marker. J Nucl Med 43:1218–1226

    PubMed  CAS  Google Scholar 

  66. Toyohara J, Kumata K, Fukushi K, Irie T, Suzuki K (2006) Evaluation of 4′-[methyl-14C]thiothymidine for in vivo DNA synthesis imaging. J Nucl Med 47:1717–1722

    PubMed  CAS  Google Scholar 

  67. Toyohara J, Nariai T, Sakata M et al (2011) Whole-body distribution and brain tumor imaging with (11)C-4DST: a pilot study. J Nucl Med 52(8):1322–1328

    Article  PubMed  Google Scholar 

  68. Mukhopadhyay U, Soghomonyan S, Yeh HH et al (2008) N(3)-substituted thymidine analogues V: Synthesis and preliminary PET imaging of N(3)-[(18)F]fluoroethyl thymidine and N(3)-[(18)F]fluoropropyl thymidine. Nucl Med Biol 35(6):697–705

    Article  PubMed  CAS  Google Scholar 

  69. Smith G, Sala R, Carroll L, et al. (2012) Synthesis and evaluation of nucleoside radiotracers for imaging proliferation. Nucl Med Biol

  70. Cai L, Lu S, Pike VW (2008) Chemistry with [18F]Fluoride Ion. Eur J Org Chem 17:2853–2873

    Article  Google Scholar 

  71. Glaser M, Årstad E (2007) “Click labeling” with 2-[18F]fluoroethylazide for positron emission tomography. Bioconj Chem 18:989–993

    Article  CAS  Google Scholar 

  72. Barletta J, Karimi F, Långstrom B (2006) Synthesis of [11C-carbonyl]hydroxyureas by a rhodium mediated carbonylation reaction using [11C]carbon monoxide. J Labelled Compd Radiopharm 49:429–436

    Article  CAS  Google Scholar 

  73. Rahman O, Kihlberg T, Langstrom B (2003) Aryl triflates and [11C]/(13C)carbon monoxide in the synthesis of 11C-/13C-amides. J Org Chem 68(9):3558–3562

    Article  PubMed  CAS  Google Scholar 

  74. Rahman O, Kihlberg T, Langstrom B (2004) Synthesis of [11C]/(13C)amines via carbonylation followed by reductive amination. Org Biomol Chem 2(11):1612–1616

    Article  PubMed  CAS  Google Scholar 

  75. Baskin JM, Prescher JA, Laughlin ST et al (2007) Copper-free click chemistry for dynamic in vivo imaging. Proc Natl Acad Sci USA 104(43):16793–16797

    Article  PubMed  CAS  Google Scholar 

  76. Bouvet V, Wuest M, Wuest F (2011) Copper-free click chemistry with the short-lived positron emitter fluorine-18. Org Biomol Chem 9(21):7393–7399

    Article  PubMed  CAS  Google Scholar 

  77. Campbell-Verduyn LS, Mirfeizi L, Schoonen AK, Dierckx RA, Elsinga PH, Feringa BL (2011) Strain-promoted copper-free “click” chemistry for 18F radiolabeling of bombesin. Angew Chem Int Ed 50(47):11117–11120

    Article  CAS  Google Scholar 

  78. Carpenter RD, Hausner SH, Sutcliffe JL (2011) Copper-free click for PET: Rapid 1,3-dipolar cycloadditions with a fluorine-18 cyclooctyne. ACS Med Chem Lett 2(12):885–889

    Article  CAS  Google Scholar 

  79. Evans HL, Slade RL, Carroll L et al (2012) Copper-free click-a promising tool for pre-targeted PET imaging. Chem Commun 48(7):991–993

    Article  CAS  Google Scholar 

  80. Sletten EM, Bertozzi CR (2011) From mechanism to mouse: A tale of two bioorthogonal reactions. Acc Chem Res 44(9):666–676

    Article  PubMed  CAS  Google Scholar 

  81. Devaraj NK, Weissleder R (2011) Biomedical applications of tetrazine cycloadditions. Acc Chem Res 44(9):816–827

    Article  PubMed  CAS  Google Scholar 

  82. Selvaraj R, Liu S, Hassink M et al (2011) Tetrazine-trans-cyclooctene ligation for the rapid construction of integrin αvβ3 targeted PET tracer based on a cyclic RGD peptide. Bioorg Med Chem Lett 21(17):5011–5014

    Article  PubMed  CAS  Google Scholar 

  83. Keliher EJ, Reiner T, Turetsky A, Hilderbrand SA, Weissleder R (2011) High-yielding, two-step 18F labeling strategy for 18F-PARP1 inhibitors. ChemMedChem 6(3):424–427

    Article  PubMed  CAS  Google Scholar 

  84. Li Z, Cai H, Hassink M et al (2010) Tetrazine-trans-cyclooctene ligation for the rapid construction of 18F labeled probes. Chem Commun 46(42):8043–8045

    Article  CAS  Google Scholar 

  85. Pretze M, Große-Gehling P, Mamat C (2011) Cross-coupling reactions as valuable tool for the preparation of PET radiotracers. Molecules 16(2):1129–1165

    Article  PubMed  CAS  Google Scholar 

  86. Watson DA, Su M, Teverovskiy G et al (2009) Formation of ArF from LPdAr(F): Catalytic conversion of aryl triflates to aryl fluorides. Science 325(5948):1661–1664

    Article  PubMed  CAS  Google Scholar 

  87. Lee E, Kamlet AS, Powers DC et al (2011) A fluoride-derived electrophilic late-stage fluorination reagent for PET imaging. Science 334(6056):639–642

    Article  PubMed  CAS  Google Scholar 

  88. Chopra A, Shan L, Eckelman WC et al (2012) Molecular imaging and contrast agent database (MICAD): Evolution and progress. Mol Imaging Biol 14(1):4–13

    Article  PubMed  Google Scholar 

  89. Boerman OC, Oyen WJ (2011) Immuno-PET of cancer: A revival of antibody imaging. J Nucl Med 52(8):1171–1172

    Article  PubMed  Google Scholar 

  90. Lapi SE, Welch MJ (2012) A historical perspective on the specific activity of radiopharmaceuticals: What have we learned in the 35 years of the ISRC? Nucl Med Biol 39(5):601–608

    Article  PubMed  CAS  Google Scholar 

  91. Fueger BJ, Czernin J, Hildebrandt I et al (2006) Impact of animal handling on the results of 18F-FDG PET studies in mice. J Nucl Med 47(6):999–1006

    PubMed  CAS  Google Scholar 

  92. DeSouza N, Hoekstra OS, Nestle U et al (2012) EORTC imaging group. Eur J Cancer (Supplements) 10(1):82–87

    Article  Google Scholar 

  93. Lambin P, Rios-Velazquez E, Leijenaar R et al (2012) Radiomics: Extracting more information from medical images using advanced feature analysis. Eur J Cancer 48(4):441–446

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric O. Aboagye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, G., Carroll, L. & Aboagye, E.O. New Frontiers in the Design and Synthesis of Imaging Probes for PET Oncology: Current Challenges and Future Directions. Mol Imaging Biol 14, 653–666 (2012). https://doi.org/10.1007/s11307-012-0590-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-012-0590-y

Key words

Navigation