Skip to main content

Advertisement

Log in

Positron Emission Tomography with [18F]-3′-Deoxy-3′fluorothymidine (FLT) as a Predictor of Outcome in Patients with Locally Advanced Resectable Rectal Cancer: a Pilot Study

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

This pilot study was performed to evaluate whether tumor uptake of 18F-labeled 3′-deoxy-3′fluorothymidine (FLT), a proliferative radiotracer, at baseline and early during therapy, is predictive of outcome in locally advanced rectal cancer.

Procedures

Fourteen patients underwent positron emission tomography (PET) with 2-deoxy-2-[18F]fluoro-d-glucose (FDG) and FLT before therapy and PET with FLT approximately 2 weeks after initiating neoadjuvant chemoradiotherapy. FLT and FDG uptake were evaluated qualitatively and by maximum standardized uptake value (SUVmax). Tumor FLT and FDG uptake were correlated with disease-free survival (DFS).

Results

Thirteen patients underwent surgery after therapy, one died before surgery with progressive disease. FDG-PET/computed tomography detected regional lymph node metastases in five and FLT-PET was positive in one. High pretherapy FDG uptake (SUVmax ≥ 14.3), low during-therapy FLT uptake (SUVmax < 2.2), and high percentage change in FLT uptake (≥60 %) were predictive of improved DFS (p < 0.05 for all three values).

Conclusion

Pretherapy FDG uptake, during-therapy FLT uptake, and percentage change in FLT uptake were equally predictive of DFS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Siegel R, Naishadham D, Jemal A (2012) Cancer statistics, 2012. CA Cancer J Clin 62:10–29. doi:10.3322/caac.20138

    Article  PubMed  Google Scholar 

  2. Frederiksen BL, Osler M, Harling H, Jorgensen T (2008) Social inequalities in stage at diagnosis of rectal but not in colonic cancer: a nationwide study. Br J Cancer 98:668–673

    Article  PubMed  CAS  Google Scholar 

  3. Sauer R, Becker H, Hohenberger W et al (2004) Preoperative versus postoperative chemoradiotherapy for rectal cancer. N Engl J Med 351:1731–1740. doi:10.1056/NEJMoa040694

    Article  PubMed  CAS  Google Scholar 

  4. Gosens MJ, Dresen RC, Rutten HJ et al (2008) Preoperative radiochemotherapy is successful also in patients with locally advanced rectal cancer who have intrinsically high apoptotic tumours. Ann Oncol 19:2026–2032

    Article  PubMed  CAS  Google Scholar 

  5. Merkel S, Klossek D, Gohl J et al (2009) Quality management in rectal carcinoma: what is feasible? Int J Colorectal Dis 24:931–942. doi:10.1007/s00384-009-0736-9

    Article  PubMed  Google Scholar 

  6. Kuremsky JG, Tepper JE, McLeod HL (2009) Biomarkers for response to neoadjuvant chemoradiation for rectal cancer. Int J Radiat Oncol Biol Phys 74:673–688. doi:10.1016/j.ijrobp.2009.03.003

    Article  PubMed  CAS  Google Scholar 

  7. Sasaki R, Komaki R, Macapinlac H et al (2005) [18F]fluorodeoxyglucose uptake by positron emission tomography predicts outcome of non-small-cell lung cancer. J Clin Oncol 23:1136–1143

    Article  PubMed  CAS  Google Scholar 

  8. Cerfolio RJ, Bryant AS, Ohja B, Bartolucci AA (2005) The maximum standardized uptake values on positron emission tomography of a non-small cell lung cancer predict stage, recurrence, and survival. J Thorac Cardiovasc Surg 130:151–159

    Article  PubMed  Google Scholar 

  9. Pan L, Gu P, Huang G, Xue H, Wu S (2009) Prognostic significance of SUV on PET/CT in patients with esophageal cancer: a systematic review and meta-analysis. Eur J Gastroenterol Hepatol 21:1008–1015

    Article  PubMed  Google Scholar 

  10. Calvo FA, Cabezon L, Gonzalez C, et al. (18)F-FDG PET bio-metabolic monitoring of neoadjuvant therapy effects in rectal cancer: focus on nodal disease characteristics. Radiother Oncol 97:212-216.

  11. Martoni AA, Di Fabio F, Pinto C, et al. Prospective study on the FDG-PET/CT predictive and prognostic values in patients treated with neoadjuvant chemoradiation therapy and radical surgery for locally advanced rectal cancer. Ann Oncol.

  12. Duch J, Fuster D, Munoz M et al (2009) 18F-FDG PET/CT for early prediction of response to neoadjuvant chemotherapy in breast cancer. Eur J Nucl Med Mol Imaging 36:1551–1557

    Article  PubMed  CAS  Google Scholar 

  13. Weber WA, Ott K, Becker K et al (2001) Prediction of response to preoperative chemotherapy in adenocarcinomas of the esophagogastric junction by metabolic imaging. J Clin Oncol 19:3058–3065

    PubMed  CAS  Google Scholar 

  14. Aukema TS, Kappers I, Olmos RA, et al. Is 18F-FDG PET/CT useful for the early prediction of histopathologic response to neoadjuvant erlotinib in patients with non-small cell lung cancer? J Nucl Med 51:1344-1348

  15. Yang W, Fu Z, Yu J et al (2008) Value of PET/CT versus enhanced CT for locoregional lymph nodes in non-small cell lung cancer. Lung Cancer 61:35–43

    Article  PubMed  Google Scholar 

  16. Shields AF, Grierson JR, Dohmen BM et al (1998) Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat Med 4:1334–1336

    Article  PubMed  CAS  Google Scholar 

  17. Pio BS, Park CK, Pietras R et al (2006) Usefulness of 3′-[F-18]fluoro-3′-deoxythymidine with positron emission tomography in predicting breast cancer response to therapy. Mol Imaging Biol 8:36–42. doi:10.1007/s11307-005-0029-9

    Article  PubMed  Google Scholar 

  18. Chen W, Cloughesy T, Kamdar N et al (2005) Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG. J Nucl Med 46:945–952

    PubMed  CAS  Google Scholar 

  19. van Waarde A, Cobben DC, Suurmeijer AJ et al (2004) Selectivity of 18F-FLT and 18F-FDG for differentiating tumor from inflammation in a rodent model. J Nucl Med 45:695–700

    PubMed  Google Scholar 

  20. Barwick T, Bencherif B, Mountz JM, Avril N (2009) Molecular PET and PET/CT imaging of tumour cell proliferation using F-18 fluoro-L-thymidine: a comprehensive evaluation. Nucl Med Commun 30:908–917. doi:10.1097/MNM.0b013e32832ee93b

    Article  PubMed  CAS  Google Scholar 

  21. Wright JD, Dehdashti F, Herzog TJ et al (2005) Preoperative lymph node staging of early-stage cervical carcinoma by [18F]-fluoro-2-deoxy-D-glucose-positron emission tomography. Cancer 104:2484–2491

    Article  PubMed  Google Scholar 

  22. Edge SB, Fritz AG, Byrd DR et al (2010) Cancer staging manual. Springer, New York

    Google Scholar 

  23. Mandard AM, Dalibard F, Mandard JC et al (1994) Pathologic assessment of tumor regression after preoperative chemoradiotherapy of esophageal carcinoma. Clinicopathologic correlations. Cancer 73:2680–2686

    Article  PubMed  CAS  Google Scholar 

  24. Bouzourene H, Bosman FT, Seelentag W, Matter M, Coucke P (2002) Importance of tumor regression assessment in predicting the outcome in patients with locally advanced rectal carcinoma who are treated with preoperative radiotherapy. Cancer 94:1121–1130

    Article  PubMed  Google Scholar 

  25. Rau B, Hunerbein M, Barth C et al (1999) Accuracy of endorectal ultrasound after preoperative radiochemotherapy in locally advanced rectal cancer. Surg Endosc 13:980–984

    Article  PubMed  CAS  Google Scholar 

  26. Ryan R, Gibbons D, Hyland JM et al (2005) Pathological response following long-course neoadjuvant chemoradiotherapy for locally advanced rectal cancer. Histopathology 47:141–146. doi:10.1111/j.1365-2559.2005.02176.x

    Article  PubMed  CAS  Google Scholar 

  27. Yun M, Oh SJ, Ha HJ, Ryu JS, Moon DH (2003) High radiochemical yield synthesis of 3′-deoxy-3′-[18F]fluorothymidine using (5′-O-dimethoxytrityl-2′-deoxy-3′-O-nosyl-beta-D-threo pentofuranosyl)thymine and its 3-N-BOC-protected analogue as a labeling precursor. Nucl Med Biol 30:151–157

    Article  PubMed  CAS  Google Scholar 

  28. Suehiro M, Vallabhajosula S, Goldsmith SJ, Ballon DJ (2007) Investigation of the role of the base in the synthesis of [18F]FLT. Appl Radiat Isot 65:1350–1358

    Article  PubMed  CAS  Google Scholar 

  29. Benz MR, Evilevitch V, Allen-Auerbach MS et al (2008) Treatment monitoring by 18F-FDG PET/CT in patients with sarcomas: interobserver variability of quantitative parameters in treatment-induced changes in histopathologically responding and nonresponding tumors. J Nucl Med 49:1038–1046. doi:10.2967/jnumed.107.050187

    Article  PubMed  Google Scholar 

  30. Siegel R, Ward E, Brawley O, Jemal A (2011) Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J Clin 61:212–236. doi:10.3322/caac.20121

    Article  PubMed  Google Scholar 

  31. Glimelius B, Oliveira J (2008) Rectal cancer: ESMO clinical recommendations for diagnosis, treatment and follow-up. Ann Oncol 19(Suppl 2):ii31–ii32. doi:10.1093/annonc/mdn078

    Article  PubMed  Google Scholar 

  32. Vriens D, de Geus-Oei LF, van der Graaf WT, Oyen WJ (2009) Tailoring therapy in colorectal cancer by PET-CT. Q J Nucl Med Mol Imaging 53:224–244

    PubMed  CAS  Google Scholar 

  33. Huh JW, Min JJ, Lee JH, Kim HR, Kim YJ (2011) The predictive role of sequential FDG-PET/CT in response of locally advanced rectal cancer to neoadjuvant chemoradiation. Am J Clin Oncol. doi:10.1097/COC.0b013e3182118e7d

  34. Hur H, Kim NK, Yun M et al (2011) 18Fluoro-deoxy-glucose positron emission tomography in assessing tumor response to preoperative chemoradiation therapy for locally advanced rectal cancer. J Surg Oncol 103:17–24. doi:10.1002/jso.21736

    Article  PubMed  Google Scholar 

  35. de Geus-Oei LF, Vriens D, van Laarhoven HW, van der Graaf WT, Oyen WJ (2009) Monitoring and predicting response to therapy with 18F-FDG PET in colorectal cancer: a systematic review. J Nucl Med 50(Suppl 1):43S–54S. doi:10.2967/jnumed.108.057224

    Article  PubMed  Google Scholar 

  36. Rosenberg R, Herrmann K, Gertler R et al (2009) The predictive value of metabolic response to preoperative radiochemotherapy in locally advanced rectal cancer measured by PET/CT. Int J Colorectal Dis 24:191–200. doi:10.1007/s00384-008-0616-8

    Article  PubMed  Google Scholar 

  37. Guerra L, Niespolo R, Di Pisa G et al (2011) Change in glucose metabolism measured by 18F-FDG PET/CT as a predictor of histopathologic response to neoadjuvant treatment in rectal cancer. Abdom Imaging 36:38–45. doi:10.1007/s00261-009-9594-8

    Article  PubMed  Google Scholar 

  38. Herrmann K, Bundschuh RA, Rosenberg R et al (2011) Comparison of different SUV-based methods for response prediction to neoadjuvant radiochemotherapy in locally advanced rectal cancer by FDG-PET and MRI. Mol Imaging Biol 13:1011–1019. doi:10.1007/s11307-010-0383-0

    Article  PubMed  Google Scholar 

  39. Cascini GL, Avallone A, Delrio P et al (2006) 18F-FDG PET is an early predictor of pathologic tumor response to preoperative radiochemotherapy in locally advanced rectal cancer. J Nucl Med 47:1241–1248

    PubMed  CAS  Google Scholar 

  40. Guillem JG, Moore HG, Akhurst T et al (2004) Sequential preoperative fluorodeoxyglucose-positron emission tomography assessment of response to preoperative chemoradiation: a means for determining longterm outcomes of rectal cancer. J Am Coll Surg 199:1–7. doi:10.1016/j.jamcollsurg.2004.02.024

    Article  PubMed  Google Scholar 

  41. Kenny L, Coombes RC, Vigushin DM et al (2007) Imaging early changes in proliferation at 1 week post chemotherapy: a pilot study in breast cancer patients with 3′-deoxy-3′-[18F]fluorothymidine positron emission tomography. Eur J Nucl Med Mol Imaging 34:1339–1347. doi:10.1007/s00259-007-0379-4

    Article  PubMed  Google Scholar 

  42. Sohn HJ, Yang YJ, Ryu JS et al (2008) [18F]Fluorothymidine positron emission tomography before and 7 days after gefitinib treatment predicts response in patients with advanced adenocarcinoma of the lung. Clin Cancer Res 14:7423–7429. doi:10.1158/1078-0432.CCR-08-0312

    Article  PubMed  CAS  Google Scholar 

  43. Chen W, Delaloye S, Silverman DH et al (2007) Predicting treatment response of malignant gliomas to bevacizumab and irinotecan by imaging proliferation with [18F] fluorothymidine positron emission tomography: a pilot study. J Clin Oncol 25:4714–4721. doi:10.1200/JCO.2006.10.5825

    Article  PubMed  CAS  Google Scholar 

  44. Wieder HA, Geinitz H, Rosenberg R et al (2007) PET imaging with [18F]3′-deoxy-3′-fluorothymidine for prediction of response to neoadjuvant treatment in patients with rectal cancer. Eur J Nucl Med Mol Imaging 34:878–883. doi:10.1007/s00259-006-0292-2

    Article  PubMed  CAS  Google Scholar 

  45. Herrmann K, Ott K, Buck AK et al (2007) Imaging gastric cancer with PET and the radiotracers 18F-FLT and 18F-FDG: a comparative analysis. J Nucl Med 48:1945–1950

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of Interest

None of the authors has a conflict of interest associated with this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farrokh Dehdashti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dehdashti, F., Grigsby, P.W., Myerson, R.J. et al. Positron Emission Tomography with [18F]-3′-Deoxy-3′fluorothymidine (FLT) as a Predictor of Outcome in Patients with Locally Advanced Resectable Rectal Cancer: a Pilot Study. Mol Imaging Biol 15, 106–113 (2013). https://doi.org/10.1007/s11307-012-0566-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-012-0566-y

Key Words

Navigation