Skip to main content

Advertisement

Log in

Evaluation of 2-Deoxy-2-[18F]Fluoro-D-glucose- and 3′-Deoxy-3′-[18F]Fluorothymidine–Positron Emission Tomography as Biomarkers of Therapy Response in Platinum-Resistant Ovarian Cancer

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

We evaluated whether 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) and 3′-deoxy-3′-[18F]fluorothymidine ([18F]FLT) positron emission tomography (PET) could be used as imaging biomarkers of platinum resensitization in ovarian cancer.

Procedures

Paired platinum-sensitive and platinum-resistant ovarian cancer cells from the same patient, PEO1 and PEO4, grown as tumor xenografts in nude mice, were assessed by PET.

Results

The AKT inhibitor, API-2, resensitized platinum-resistant PEO4 tumors to cisplatin, leading to a markedly lower Ki67 labeling index (p ≤ 0.006, n = 6 per group). [18F]FDG-PET and [18F]FLT-PET imaging variables were lower after combination treatment compared with vehicle treatment (p ≤ 0.006, n = 6 per group). No changes were seen with either drug alone. PRAS40 phosphorylation status was a sensitive biochemical marker of pathway inhibition, whereas reductions thymidine kinase 1 expression defined the [18F]FLT response.

Conclusions

Therapeutic inhibition of AKT activation in acquired platinum-resistant disease can be imaged noninvasively by [18F]FDG-PET and [18F]FLT-PET warranting further assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kelland LR (2005) Emerging drugs for ovarian cancer. Expert Opin Emerg Drugs 10:413–424

    Article  PubMed  CAS  Google Scholar 

  2. Kolasa IK, Rembiszewska A, Felisiak A et al (2009) PIK3CA amplification associates with resistance to chemotherapy in ovarian cancer patients. Cancer Biol Ther 8:21–26

    Article  PubMed  CAS  Google Scholar 

  3. Stronach EA, Alfraidi A, Rama N et al (2011) HDAC4-regulated STAT1 activation mediates platinum resistance in ovarian cancer. Cancer Res 71:4412–4422

    Article  PubMed  CAS  Google Scholar 

  4. Stronach EA, Chen M, Maginn EN et al (2011) DNA-PK mediates AKT activation and apoptosis inhibition in clinically acquired platinum resistance. Neoplasia 13:1069–1108

    PubMed  CAS  Google Scholar 

  5. Langdon SP, Lawrie SS, Hay FG et al (1988) Characterization and properties of nine human ovarian adenocarcinoma cell lines. Cancer Res 48:6166–6172

    PubMed  CAS  Google Scholar 

  6. Cooke SL, Ng CKY, Melnyk N et al (2010) Genomic analysis of genetic heterogeneity and evolution in high-grade serous ovarian carcinoma. Oncogene 29:4905–4913

    Article  PubMed  CAS  Google Scholar 

  7. Sakai W, Swisher EM, Jacquemont C et al (2009) Functional restoration of BRCA2 protein by secondary BRCA2 mutations in BRCA2-mutated ovarian carcinoma. Cancer Res 69:6381–6386

    Article  PubMed  CAS  Google Scholar 

  8. Workman P, Aboagye EO, Balkwill F et al (2010) Guidelines for the welfare and use of animals in cancer research. Br J Cancer 102:1555–1577

    Article  PubMed  CAS  Google Scholar 

  9. Yang L, Dan HC, Sun M et al (2004) Akt/protein kinase B signaling inhibitor-2, a selective small molecule inhibitor of Akt signaling with antitumor activity in cancer cells overexpressing Akt. Cancer Res 64:4394–4399

    Article  PubMed  CAS  Google Scholar 

  10. Leyton J, Alao JP, Da Costa M et al (2006) In vivo biological activity of the histone deacetylase inhibitor LAQ824 is detectable with 3′-deoxy-3′-[18F]fluorothymidine positron emission tomography. Cancer Res 66:7621–7629

    Article  PubMed  CAS  Google Scholar 

  11. Leyton J, Latigo JR, Perumal M et al (2005) Early detection of tumor response to chemotherapy by 3′-deoxy-3′-[18F]fluorothymidine positron emission tomography: the effect of cisplatin on a fibrosarcoma tumor model in vivo. Cancer Res 65:4202–4210

    Article  PubMed  CAS  Google Scholar 

  12. Leyton J, Smith G, Lees M et al (2008) Noninvasive imaging of cell proliferation following mitogenic extracellular kinase inhibition by PD0325901. Mol Cancer Ther 7:3112–3121

    Article  PubMed  CAS  Google Scholar 

  13. Altomare DA, Zhang L, Deng J et al (2010) GSK690693 delays tumor onset and progression in genetically defined mouse models expressing activated Akt. Clin Cancer Res 16:486–496

    Article  PubMed  CAS  Google Scholar 

  14. Rhodes N, Heerding DA, Duckett DR et al (2008) Characterization of an Akt kinase inhibitor with potent pharmacodynamic and antitumor activity. Cancer Res 68:2366–2374

    Article  PubMed  CAS  Google Scholar 

  15. Workman P, Clarke PA, Guillard S et al (2006) Drugging the PI3 kinome. Nat Biotechnol 24:794–796

    Article  PubMed  CAS  Google Scholar 

  16. Agarwal R, Kaye S (2003) Ovarian cancer: strategies for overcoming resistance to chemotherapy. Nat Rev Cancer 3:502–516

    Article  PubMed  CAS  Google Scholar 

  17. Liu P, Cheng H, Roberts TM et al (2009) Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov 8:627–644

    Article  PubMed  CAS  Google Scholar 

  18. Stronach EA, Cheraghchi-Bashi A, Chen M et al (2011) Targeting the AKT pathway in ovarian cancer. In: Kaye S, Brown R, Gabra H et al (eds) Emerging therapeutic targets in ovarian cancer. Springer, New York, pp 73–94

    Chapter  Google Scholar 

  19. Bozulic L, Surucu B, Hynx D et al (2008) PKBalpha/Akt1 acts downstream of DNA–PK in the DNA double-strand break response and promotes survival. Mol Cell 30:203–213

    Article  PubMed  CAS  Google Scholar 

  20. Contractor KB, Aboagye EO (2009) Monitoring predominantly cytostatic treatment response with 18F-FDG PET. J Nucl Med 50:97S–105S

    Article  PubMed  CAS  Google Scholar 

  21. Kenny L, Coombes R, Vigushin D et al (2007) Imaging early changes in proliferation at 1 week post chemotherapy: a pilot study in breast cancer patients with 3′-deoxy-3′-[18F]fluorothymidine positron emission tomography. Eur J Nucl Med Mol Imaging 34:1339–1347

    Article  PubMed  Google Scholar 

  22. Iagaru AH, Mittra ES, McDougall IR et al (2008) 18F-FDG PET/CT evaluation of patients with ovarian carcinoma. Nucl Med Commun 29:1046–1051

    Article  PubMed  Google Scholar 

  23. Kurokawa T, Yoshida Y, Kawahara K et al (2004) Expression of GLUT-1 glucose transfer, cellular proliferation activity and grade of tumor correlate with [F-18]-fluorodeoxyglucose uptake by positron emission tomography in epithelial tumors of the ovary. Int J Cancer 109:926–932

    Article  PubMed  CAS  Google Scholar 

  24. Kenny LM, Vigushin DM, Al-Nahhas A et al (2005) Quantification of cellular proliferation in tumor and normal tissues of patients with breast cancer by [18F]fluorothymidine–positron emission tomography imaging: evaluation of analytical methods. Cancer Res 65:10104–10112

    Article  PubMed  CAS  Google Scholar 

  25. Barthel H, Wilson H, Collingridge DR et al (2004) In vivo evaluation of [18F]fluoroetanidazole as a new marker for imaging tumour hypoxia with positron emission tomography. Br J Cancer 90:2232–2242

    PubMed  CAS  Google Scholar 

  26. Rasey JS, Grierson JR, Wiens LW et al (2002) Validation of FLT uptake as a measure of thymidine kinase-1 activity in A549 carcinoma cells. J Nucl Med 43:1210–1217

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank grant support from Cancer Research UK and Engineering and Physical Sciences Research Council (C2536/A10337), UK Medical Research Council (U1200.005.00001.01) and Ovarian Cancer Action. We would like to thank the Staff at the Biological Imaging Centre at Imperial College for their support.

Potential Conflict of Interest Statement

No potential conflicts of interest were disclosed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric O. Aboagye.

Electronic Supplementary Materials

Below is the link to the electronic supplementary material.

ESM 1

(PDF 36 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perumal, M., Stronach, E.A., Gabra, H. et al. Evaluation of 2-Deoxy-2-[18F]Fluoro-D-glucose- and 3′-Deoxy-3′-[18F]Fluorothymidine–Positron Emission Tomography as Biomarkers of Therapy Response in Platinum-Resistant Ovarian Cancer. Mol Imaging Biol 14, 753–761 (2012). https://doi.org/10.1007/s11307-012-0554-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-012-0554-2

Key words

Navigation