Skip to main content
Log in

Quantitative Analysis and Parametric Imaging of 18F-Labeled Monomeric and Dimeric RGD Peptides Using Compartment Model

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Non-invasive PET imaging with radiolabeled RGD peptides for αvβ3 integrin targeting has become an important tool for tumor diagnosis and treatment monitoring in both pre-clinical and clinical studies. To better understand the molecular process and tracer pharmacokinetics, we introduced kinetic modeling in the investigation of 18F-labeled RGD peptide monomer 18F-FP-c(RGDyK) (denoted as 18F-FPRGD) and dimer 18F-FP-PEG3-E[c(RGDyK)]2 (denoted as 18F-FPPRGD2).

Procedures

MDA-MB-435 tumor-bearing mice underwent 60 min dynamic PET scans following the injection of either 18F-FPRGD or 18F-FPPRGD2. Blocking studies with pre-injection of a blocking mass dose were performed for both monomeric and dimeric RGD groups. 18F-FPRAD (RAD) was used as a negative control. Kinetic parameters (K 1, k 2, k 3, k 4) of a three-compartment model were fitted to the dynamic data to allow quantitative comparisons between the monomeric and dimeric RGD peptides.

Results

Dimeric RGD peptide tracer showed significantly higher binding potential (BpND = k3/k4, 5.87 ± 0.31) than that of the monomeric analog (2.75 ± 0.48, p = 0.0022, n = 4/group). The BpND values showed a significantly greater ratio (dimer/monomer ~2.1) than the difference in %ID/g uptake measured from static images (dimer/monomer ~1.5, p = 0.0045). Significant decrease in BpND was found in the blocked groups compared with the unblocked ones (dimer p = 0.00024, monomer p = 0.005, n = 4/group). Similarly, the RAD control group showed the lowest BpND value among all the test groups, as the RAD peptide does not bind to integrin αvβ3. Volume of distribution (V T = K 1/k 2(1 + k 3/k 4)) could be separated into non-specific (V ND = K 1/k 2) and specific (V S = K 1 k 3/(k 2 k 4)) components. Specific distribution volume (V S) was the dominant component of V T in the unblocked groups and decreased in the blocked groups. Unblocked RGD dimer also showed higher V S than that of the monomer (dimer V S = 2.38 ± 0.15, monomer V S = 0.90 ± 0.17, p = 0.0013, n = 4/group), well correlated with BpND calculations. Little difference in V ND was found among all groups. Moreover, parametric maps allowed quantitative analysis at voxel level and provided higher tumor-to-background contrast for BpND maps than the static images. Tumor heterogeneity in kinetic parameters was found in parametric images, which could not be clearly identified in static intensity images.

Conclusions

The pharmacokinetics of both monomeric and dimeric RGD peptide tracers was compared, and the RGD dimers showed significantly higher binding affinity than the monomeric analogs. Kinetic parameters were demonstrated to be valuable for separating specific and non-specific binding and may allow more sensitive and detailed quantification than simple standardized uptake value analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Beer AJ, Schwaiger M (2008) Imaging of integrin alphavbeta3 expression. Cancer Metastasis Rev 27:631–644

    Article  PubMed  CAS  Google Scholar 

  2. Kimura RH, Cheng Z, Gambhir SS et al (2009) Engineered knottin peptides: a new class of agents for imaging integrin expression in living subjects. Cancer Res 69:2435–2442

    Article  PubMed  CAS  Google Scholar 

  3. Hood JD, Cheresh DA (2002) Role of integrins in cell invasion and migration. Nat Rev Cancer 2:91–100

    Article  PubMed  Google Scholar 

  4. Haubner R, Wester HJ, Weber WA et al (2001) Noninvasive imaging of αvβ3 integrin expression using 18F-labeled RGD-containing glycopeptide and positron emission tomography. Cancer Res 61:1781–1785

    PubMed  CAS  Google Scholar 

  5. Niu G, Chen X (2011) Why integrin as a primary target for imaging and therapy. Theranostics 1:30–47

    Article  PubMed  CAS  Google Scholar 

  6. Beer AJ, Kessler H, Wester HJ et al (2011) PET imaging of integrin αvβ3 expression. Theranostics 1:48–57

    Article  PubMed  CAS  Google Scholar 

  7. Chen X (2006) Multimodality imaging of tumor integrin αvβ3 expression. Mini Rev Med Chem 6:227–234

    Article  PubMed  CAS  Google Scholar 

  8. Dumont RA, Deininger F, Haubner R et al (2011) Novel 64Cu- and 68Ga-labeled RGD conjugates show improved PET imaging of αvβ3 integrin expression and facile radiosynthesis. J Nucl Med 52:1276–1284

    Article  PubMed  CAS  Google Scholar 

  9. Mittra ES, Goris ML, Iagaru AH et al (2011) Pilot pharmacokinetic and dosimetric studies of 18F-FPPRGD2: a PET radiopharmaceutical agent for imaging αvβ3 integrin levels. Radiology 260:182–191

    Article  PubMed  Google Scholar 

  10. Chin FT, Shen B, Liu S et al (2012) First experience with clinical-grade [18F]FPP(RGD)2: an automated multi-step radiosynthesis for clinical PET studies. Mol Imaging Biol 14:88–95.

    Google Scholar 

  11. Battle MR, Goggi JL, Allen L et al (2011) Monitoring tumor response to antiangiogenic sunitinib therapy with 18F-fluciclatide, an 18F-labeled αvβ3-integrin and αvβ5-integrin imaging agent. J Nucl Med 52:424–430

    Article  PubMed  CAS  Google Scholar 

  12. Liu S (2009) Radiolabeled cyclic RGD peptides as integrin αvβ3-targeted radiotracers: maximizing binding affinity via bivalency. Bioconjug Chem 20:2199–2213

    Article  PubMed  CAS  Google Scholar 

  13. Schottelius M, Laufer B, Kessler H et al (2009) Ligands for mapping αvβ3-integrin expression in vivo. Acc Chem Res 42:969–980

    Article  PubMed  CAS  Google Scholar 

  14. Cai W, Chen X (2008) Preparation of peptide-conjugated quantum dots for tumor vasculature-targeted imaging. Nat Protoc 3:89–96

    Article  PubMed  CAS  Google Scholar 

  15. Jeong JM, Hong MK, Chang YS et al (2008) Preparation of a promising angiogenesis PET imaging agent: 68Ga-labeled c(RGDyK)-isothiocyanatobenzyl-1,4,7-triazacyclononane-1,4,7-triacetic acid and feasibility studies in mice. J Nucl Med 49:830–836

    Article  PubMed  CAS  Google Scholar 

  16. Wu Y, Zhang X, Xiong Z et al (2005) microPET imaging of glioma integrin αvβ3 expression using 64Cu-labeled tetrameric RGD peptide. J Nucl Med 46:1707–1718

    PubMed  CAS  Google Scholar 

  17. Sun X, Yan Y, Liu S et al (2011) 18F-FPPRGD2 and 18F-FDG PET of response to Abraxane therapy. J Nucl Med 52:140–146

    Article  PubMed  Google Scholar 

  18. Liu S, Liu Z, Chen K et al (2010) 18F-labeled galacto and PEGylated RGD dimers for PET imaging of αvβ3 integrin expression. Mol Imaging Biol 12:530–538

    Article  PubMed  Google Scholar 

  19. Zhang X, Xiong Z, Wu Y et al (2006) Quantitative PET imaging of tumor integrin alphavbeta3 expression with 18F-FRGD2. J Nucl Med 47:113–121

    PubMed  CAS  Google Scholar 

  20. Liu Z, Liu S, Wang F et al (2009) Noninvasive imaging of tumor integrin expression using 18F-labeled RGD dimer peptide with PEG4 linkers. Eur J Nucl Med Mol Imaging 36:1296–1307

    Article  PubMed  CAS  Google Scholar 

  21. Shoghi KI (2009) Quantitative small animal PET. Q J Nucl Med Mol Imaging 53:365–373

    PubMed  CAS  Google Scholar 

  22. Hong YT, Beech JS, Smith R et al (2011) Parametric mapping of [18F]fluoromisonidazole positron emission tomography using basis functions. J Cereb Blood Flow Metab 31:648–657

    Article  PubMed  Google Scholar 

  23. Beer AJ, Haubner R, Goebel M et al (2005) Biodistribution and pharmacokinetics of the alphavbeta3-selective tracer 18F-galacto-RGD in cancer patients. J Nucl Med 46:1333–1341

    PubMed  CAS  Google Scholar 

  24. Ferl GZ, Dumont RA, Hildebrandt IJ et al (2009) Derivation of a compartmental model for quantifying 64Cu-DOTA-RGD kinetics in tumor-bearing mice. J Nucl Med 50:250–258

    Article  PubMed  Google Scholar 

  25. Yang M, Gao H, Zhou Y et al (2011) 18F-labeled GRPR agonists and antagonists: a comparative study in prostate cancer imaging. Theranostics 1:220–229

    Article  PubMed  CAS  Google Scholar 

  26. Quan Q, Yang M, Gao H et al (2011) Imaging tumor endothelial marker 8 using an 18F-labeled peptide. Eur J Nucl Med Mol Imaging 38:1806–1815

    Article  PubMed  Google Scholar 

  27. Phelps ME, Huang SC, Hoffman EJ et al (1979) Tomographic measurement of local cerebral glucose metabolic rate in humans with 18F-2-fluoro-2-deoxy-d-glucose: validation of method. Ann Neurol 6:371–388

    Article  PubMed  CAS  Google Scholar 

  28. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat Contr AC:716–723

    Google Scholar 

  29. Watabe H, Ikoma Y, Kimura Y et al (2006) PET kinetic analysis—compartmental model. Ann Nucl Med 20:583–588

    Article  PubMed  CAS  Google Scholar 

  30. Innis RB, Cunningham VJ, Delforge J et al (2007) Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab 27:1533–1539

    Article  PubMed  CAS  Google Scholar 

  31. Li ZB, Chen K, Chen X (2008) 68Ga-labeled multimeric RGD peptides for microPET imaging of integrin αvβ3 expression. Eur J Nucl Med Mol Imaging 35:1100–1108

    Article  PubMed  CAS  Google Scholar 

  32. Tomasi G, Turkheimer F, Aboagye E (2011) Importance of quantification for the analysis of PET data in oncology: review of current methods and trends for the future. Mol Imaging Biol. doi:10.1007/s11307-011-0514-2

  33. Li ZB, Cai W, Cao Q et al (2007) 64Cu-labeled tetrameric and octameric RGD peptides for small-animal PET of tumor αvβ3 integrin expression. J Nucl Med 48:1162–1171

    Article  PubMed  CAS  Google Scholar 

  34. Chen X, Tohme M, Park R et al (2004) Micro-PET imaging of αvβ3-integrin expression with 18F-labeled dimeric RGD peptide. Mol Imaging 3:96–104

    Article  PubMed  CAS  Google Scholar 

  35. Tomasi G, Kenny L, Mauri F et al (2011) Quantification of receptor-ligand binding with [18F]fluciclatide in metastatic breast cancer patients. Eur J Nucl Med Mol Imaging 38:2186–2197

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part, by the Intramural Research Program of the National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), the International Cooperative Program of the National Science Foundation of China (NSFC) (81028009), and NSFC Grants (60972099, 61027006). NG was partially sponsored by the China Scholarship Council (CSC).

Conflict of Interest Disclosure

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingguo Xie or Xiaoyuan Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, N., Lang, L., Gao, H. et al. Quantitative Analysis and Parametric Imaging of 18F-Labeled Monomeric and Dimeric RGD Peptides Using Compartment Model. Mol Imaging Biol 14, 743–752 (2012). https://doi.org/10.1007/s11307-012-0541-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-012-0541-7

Key words

Navigation