Skip to main content

Advertisement

Log in

Prospective Evaluation of 99mTc MDP Scintigraphy, 18F NaF PET/CT, and 18F FDG PET/CT for Detection of Skeletal Metastases

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Introduction

Technetium (Tc) methylene diphosphonate (MDP) has been the standard method for bone scintigraphy for three decades. 18F sodium fluoride (18F NaF) positron emission tomography (PET)/computed tomography (CT) has better resolution and is considered superior. The role of 2-deoxy-2-[18F]fluoro-D-glucose (18F FDG) PET/CT is proven in a variety of cancers, for which it has changed the practice of oncology. There are few prospective studies comparing these three methods of detection of skeletal metastases. Thus, we were prompted to initiate this prospective pilot trial.

Methods

This is a prospective study (Sep 2007–Dec 2010) of 52 patients with proven malignancy referred for evaluation of skeletal metastases. There were 37 men and 15 women, 19–84 years old (average, 55.6 ± 15.9). Technetium-99m (99mTc) MDP bone scintigraphy, 18F NaF PET/CT, and 18F FDG PET/CT were subsequently performed within 1 month.

Results

Skeletal lesions were detected by 99mTc MDP bone scintigraphy in 22 of 52 patients, by 18F NaF PET/CT in 24 of 52 patients, and by 18F FDG PET/CT in 16 of 52 patients. The image quality and evaluation of extent of disease were superior by 18F NaF PET/CT over 99mTc MDP scintigraphy in all 22 patients with skeletal lesions on both scans and over 18F FDG PET/CT in 11 of 16 patients with skeletal metastases on 18F FDG PET/CT. In two patients, 18F NaF PET/CT showed skeletal metastases not seen on either of the other two scans. Extraskeletal lesions were identified by 18F FDG PET/CT in 28 of 52 subjects.

Conclusion

Our prospective pilot-phase trial demonstrates superior image quality and evaluation of skeletal disease extent with 18F NaF PET/CT over 99mTc MDP scintigraphy and 18F FDG PET/CT. At the same time, 18F FDG PET detects extraskeletal disease that can significantly change disease management. As such, a combination of 18F FDG PET/CT and 18F NaF PET/CT may be necessary for cancer detection. Additional evaluation with larger cohorts is required to confirm these preliminary findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bombardieri E, Aktolun C, Baum RP et al (2003) Bone scintigraphy: procedure guidelines for tumour imaging. Eur J Nucl Med Mol Imaging 30(12):BP99–BP106

    PubMed  Google Scholar 

  2. Jacobson AF, Fogelman I (1998) Bone scanning in clinical oncology: does it have a future? Eur J Nucl Med 25(9):1219–1223

    Article  PubMed  CAS  Google Scholar 

  3. Even-Sapir E (2005) Imaging of malignant bone involvement by morphologic, scintigraphic, and hybrid modalities. J Nucl Med 46(8):1356–1367

    PubMed  Google Scholar 

  4. Schirrmeister H, Glatting G, Hetzel J et al (2001) Prospective evaluation of the clinical value of planar bone scans, SPECT, and (18)F-labeled NaF PET in newly diagnosed lung cancer. J Nucl Med 42(12):1800–1804

    PubMed  CAS  Google Scholar 

  5. Min JW, Um SW, Yim JJ et al (2009) The role of whole-body FDG PET/CT, Tc 99m MDP bone scintigraphy, and serum alkaline phosphatase in detecting bone metastasis in patients with newly diagnosed lung cancer. J Korean Med Sci 24(2):275–280

    Article  PubMed  Google Scholar 

  6. Chua S, Gnanasegaran G, Cook GJ (2009) Miscellaneous cancers (lung, thyroid, renal cancer, myeloma, and neuroendocrine tumors): role of SPECT and PET in imaging bone metastases. Semin Nucl Med 39(6):416–430

    Article  PubMed  Google Scholar 

  7. Hsu WK, Virk MS, Feeley BT, Stout DB, Chatziioannou AF, Lieberman JR (2008) Characterization of osteolytic, osteoblastic, and mixed lesions in a prostate cancer mouse model using 18F-FDG and 18F-fluoride PET/CT. J Nucl Med 49(3):414–421

    Article  PubMed  Google Scholar 

  8. Chen YW, Huang MY, Hsieh JS, Hou MF, Chou SH, Lin CL (2007) Discordant findings of skeletal metastasis between tc 99M MDP bone scans and F18 FDG PET/CT imaging for advanced breast and lung cancers—two case reports and literature review. Kaohsiung J Med Sci 23(12):639–646

    Article  PubMed  Google Scholar 

  9. Schirrmeister H, Guhlmann A, Elsner K et al (1999) Sensitivity in detecting osseous lesions depends on anatomic localization: planar bone scintigraphy versus 18F PET. J Nucl Med 40(10):1623–1629

    PubMed  CAS  Google Scholar 

  10. Ben-Haim S, Israel O (2009) Breast cancer: role of SPECT and PET in imaging bone metastases. Semin Nucl Med 39(6):408–415

    Article  PubMed  Google Scholar 

  11. Bridges RL, Wiley CR, Christian JC, Strohm AP (2007) An introduction to Na(18)F bone scintigraphy: basic principles, advanced imaging concepts, and case examples. J Nucl Med Technol 35(2):64–76, quiz 78–69

    Article  PubMed  Google Scholar 

  12. Shirazi PH, Rayudu GV, Fordham EW (1974) 18F bone scanning: review of indications and results of 1,500 scans. Radiology 112(2):361–368

    PubMed  CAS  Google Scholar 

  13. Grant FD, Fahey FH, Packard AB, Davis RT, Alavi A, Treves ST (2008) Skeletal PET with 18F-fluoride: applying new technology to an old tracer. J Nucl Med 49(1):68–78

    Article  PubMed  Google Scholar 

  14. Gamie S, El-Maghraby T (2008) The role of PET/CT in evaluation of Facet and Disc abnormalities in patients with low back pain using (18)F-fluoride. Nucl Med Rev Cent East Eur 11(1):17–21

    PubMed  Google Scholar 

  15. Drubach LA, Sapp MV, Laffin S, Kleinman PK (2008) Fluorine-18 NaF PET imaging of child abuse. Pediatr Radiol 38(7):776–779

    Article  PubMed  Google Scholar 

  16. Bhargava P, Hanif M, Nash C (2008) Whole-body F-18 sodium fluoride PET-CT in a patient with renal cell carcinoma. Clin Nucl Med 33(12):894–895

    Article  PubMed  Google Scholar 

  17. Lim R, Fahey FH, Drubach LA, Connolly LP, Treves ST (2007) Early experience with fluorine-18 sodium fluoride bone PET in young patients with back pain. J Pediatr Orthop 27(3):277–282

    Article  PubMed  Google Scholar 

  18. Even-Sapir E, Metser U, Mishani E, Lievshitz G, Lerman H, Leibovitch I (2006) The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med 47(2):287–297

    PubMed  Google Scholar 

  19. Even-Sapir E, Mishani E, Flusser G, Metser U (2007) 18F-fluoride positron emission tomography and positron emission tomography/computed tomography. Semin Nucl Med 37(6):462–469

    Article  PubMed  Google Scholar 

  20. Even-Sapir E, Metser U, Flusser G et al (2004) Assessment of malignant skeletal disease: initial experience with 18F-fluoride PET/CT and comparison between 18F-fluoride PET and 18F-fluoride PET/CT. J Nucl Med 45(2):272–278

    PubMed  Google Scholar 

  21. Hetzel M, Arslandemir C, Konig HH et al (2003) F-18 NaF PET for detection of bone metastases in lung cancer: accuracy, cost-effectiveness, and impact on patient management. J Bone Miner Res 18(12):2206–2214

    Article  PubMed  Google Scholar 

  22. Schirrmeister H, Buck A, Guhlmann A, Reske SN (2001) Anatomical distribution and sclerotic activity of bone metastases from thyroid cancer assessed with F-18 sodium fluoride positron emission tomography. Thyroid 11(7):677–683

    Article  PubMed  CAS  Google Scholar 

  23. Cook GJ, Fogelman I (2001) Detection of bone metastases in cancer patients by 18F-fluoride and 18F-fluorodeoxyglucose positron emission tomography. Q J Nucl Med 45(1):47–52

    PubMed  CAS  Google Scholar 

  24. Blake GM, Park-Holohan SJ, Cook GJ, Fogelman I (2001) Quantitative studies of bone with the use of 18F-fluoride and 99mTc-methylene diphosphonate. Semin Nucl Med 31(1):28–49

    Article  PubMed  CAS  Google Scholar 

  25. Kruger S, Buck A, Mottaghy F et al (2009) Detection of bone metastases in patients with lung cancer: 99mTc-MDP planar bone scintigraphy, 18F-fluoride PET or 18F-FDG PET/CT. Eur J Nucl Med Mol Imaging 36(11):1807–1812

    Article  PubMed  Google Scholar 

  26. Feldman F, van Heertum R, Manos C (2003) 18FDG PET scanning of benign and malignant musculoskeletal lesions. Skeletal Radiol 32(4):201–208

    Article  PubMed  Google Scholar 

  27. Uematsu T, Yuen S, Yukisawa S et al (2005) Comparison of FDG PET and SPECT for detection of bone metastases in breast cancer. Am J Roentgenol 184(4):1266–1273

    Google Scholar 

  28. Nakai T, Okuyama C, Kubota T et al (2005) Pitfalls of FDG-PET for the diagnosis of osteoblastic bone metastases in patients with breast cancer. Eur J Nucl Med Mol Imaging 32(11):1253–1258

    Article  PubMed  Google Scholar 

  29. Meirelles GSP, Schoder H, Ravizzini GC et al (2010) Prognostic value of baseline [18F] fluorodeoxyglucose positron emission tomography and 99mTc-MDP bone scan in progressing metastatic prostate cancer. Clin Cancer Res 16(24):6093–6099

    Article  PubMed  CAS  Google Scholar 

  30. Jadvar H, Pinski J, Conti P (2003) FDG PET in suspected recurrent and metastatic prostate cancer. Oncol Rep 10(5):1485–1488

    PubMed  Google Scholar 

  31. Shulkin B, Goodin G, McCarville M et al (2009) Bone and [18F]fluorodeoxyglucose positron-emission tomography/computed tomography scanning for the assessment of osseous involvement in Hodgkin lymphoma in children and young adults. Leuk Lymphoma 50(11):1794–1802

    Article  PubMed  Google Scholar 

  32. Jadvar H, Conti P (2002) Diagnostic utility of FDG PET in multiple myeloma. Skeletal Radiol 31(12):690–694

    Article  PubMed  Google Scholar 

  33. Fogelman I, Cook G, Israel O, Van der Wall H (2005) Positron emission tomography and bone metastases. Semin Nucl Med 35(2):135–142

    Article  PubMed  Google Scholar 

  34. Jadvar H, Gamie S, Ramanna L, Conti P (2004) Musculoskeletal system. Semin Nucl Med 34(4):254–261

    Article  PubMed  Google Scholar 

  35. Peterson J, Kransdorf M, O’Connor M (2003) Diagnosis of occult bone metastases: positron emission tomography. Clin Orthop Relat Res 415(Suppl):S120–S128

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported in part by NCI ICMIC CA114747 (SSG), and the clinical studies were supported in part by the Doris Duke Foundation and Canary Foundation (SSG). We would also like to thank Dr. Fred Chin in the Cyclotron Facility, Lindee Burton, and all the technologists in the Nuclear Medicine Clinic.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei Iagaru.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iagaru, A., Mittra, E., Dick, D.W. et al. Prospective Evaluation of 99mTc MDP Scintigraphy, 18F NaF PET/CT, and 18F FDG PET/CT for Detection of Skeletal Metastases. Mol Imaging Biol 14, 252–259 (2012). https://doi.org/10.1007/s11307-011-0486-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-011-0486-2

Key words

Navigation