Skip to main content
Log in

Visualization of Copper Metabolism by 64CuCl2-PET

  • Commentary
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Kaplan JH, Lutsenko S (2009) Copper transport in mammalian cells: special care for a metal with special needs. J Biol Chem 284:25461–25465

    Article  PubMed  CAS  Google Scholar 

  2. Merle U, Tuma S, Herrmann T, Muntean V, Volkmann M, Gehrke SG, Stremmel W (2010) Evidence for a critical role of ceruloplasmin oxidase activity in iron metabolism of Wilson disease gene knockout mice. J Gastroenterol Hepatol 25:1144–1150

    Article  PubMed  CAS  Google Scholar 

  3. Turnlund JR (1998) Human whole-body copper metabolism. Am J Clin Nutr 67:960S–964S

    PubMed  CAS  Google Scholar 

  4. Horslen SP, Tanner MS, Lyon TD, Fell GS, Lowry MF (1994) Copper associated childhood cirrhosis. Gut 35:1497–1500

    Article  PubMed  CAS  Google Scholar 

  5. Merli M, Patriarca M, Loudianos G, Valente C, Riggio O, De Felice G, Petrucci F, Caroli S, Attili AF (1998) Use of the stable isotope 65Cu test for the screening of Wilson’s disease in a family with two affected members. Ital J Gastroenterol Hepatol 30:270–275

    PubMed  CAS  Google Scholar 

  6. Blower PJ, Lewis JS, Zweit J (1996) Copper radionuclides and radiopharmaceuticals in nuclear medicine. Nucl Med Biol 23:957–980

    Article  PubMed  CAS  Google Scholar 

  7. Bush JA, Mahoney JP, Markowitz H, Gubler CJ, Cartwright GE, Wintrobe MM (1955) Studies on copper metabolism. XIV. Radioactive copper studies in normal subjects and in patients with hepatolenticular degeneration. J Clin Invest 34:1766–1778

    Article  PubMed  CAS  Google Scholar 

  8. Osborn SB, Szaz KF, Walshe JM (1969) Studies with radioactive copper (64Cu and 67Cu): abdominal scintiscans in patients with Wilson’s disease. Q J Med 38:467–474

    PubMed  CAS  Google Scholar 

  9. Peng F, Lutsenko S, Sun X, Muzik O (2011) Positron emission tomography of copper metabolism in the Atp7b−/− knock-out mouse model of Wilson’s disease. Mol Imaging Biol (in press)

  10. Scheinberg IH, Sternlieb I (1965) Wilson’s disease. Annu Rev Med 16:119–134

    Article  PubMed  CAS  Google Scholar 

  11. Gitlin JD (2003) Wilson disease. Gastroenterology 125:1868–1877

    Article  PubMed  Google Scholar 

  12. Ala A, Walker AP, Ashkan K, Dooley JS, Schilsky ML (2007) Wilson’s disease. Lancet 369:397–408

    Article  PubMed  CAS  Google Scholar 

  13. Donsante A, Johnson P, Jansen LA, Kaler SG (2010) Somatic mosaicism in Menkes disease suggests choroid plexus-mediated copper transport to the developing brain. Am J Med Genet A 152A:2529–2534

    Article  PubMed  CAS  Google Scholar 

  14. Inoue K, Takano H, Shimada A, Satoh M (2009) Metallothionein as an anti-inflammatory mediator. Mediat Inflamm 2009:101659

    Google Scholar 

  15. Bohlken A, Cheung BB, Bell JL, Koach J, Smith S, Sekyere E, Thomas W, Norris M, Haber M, Lovejoy DB et al (2009) ATP7A is a novel target of retinoic acid receptor β2 in neuroblastoma cells. Br J Cancer 100:96–105

    Article  PubMed  CAS  Google Scholar 

  16. Furukawa T, Komatsu M, Ikeda R, Tsujikawa K, Akiyama S (2008) Copper transport systems are involved in multidrug resistance and drug transport. Curr Med Chem 15:3268–3278

    Article  PubMed  CAS  Google Scholar 

  17. Turski ML, Thiele DJ (2009) New roles for copper metabolism in cell proliferation, signaling, and disease. J Biol Chem 284:717–721

    Article  PubMed  CAS  Google Scholar 

  18. Gupte A, Mumper RJ (2009) Elevated copper and oxidative stress in cancer cells as a target for cancer treatment. Cancer Treat Rev 35:32–46

    Article  PubMed  CAS  Google Scholar 

  19. Subramanian I, Vanek ZF, Bronstein JM (2002) Diagnosis and treatment of Wilson’s disease. Curr Neurol Neurosci Rep 2:317–323

    Article  PubMed  Google Scholar 

  20. Hancock CN, Stockwin LH, Han B, Divelbiss RD, Jun JH, Malhotra SV, Hollingshead MG, Newton DL (2011) A copper chelate of thiosemicarbazone NSC 689534 induces oxidative/ER stress and inhibits tumor growth in vitro and in vivo. Free Radic Biol Med 50:110–121

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Intramural Research Program (IRP) of the National Institute of Biomedical Imaging and Bioengineering (NIBIB), NIH, and the International Cooperative Program of the National Science Foundation of China (NSFC) (81028009).

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyuan Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Chen, X. Visualization of Copper Metabolism by 64CuCl2-PET. Mol Imaging Biol 14, 14–16 (2012). https://doi.org/10.1007/s11307-011-0483-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-011-0483-5

Keywords

Navigation