Skip to main content

Advertisement

Log in

Quantitating Antibody Uptake In Vivo: Conditional Dependence on Antigen Expression Levels

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Antibodies form an important class of cancer therapeutics, and there is intense interest in using them for imaging applications in diagnosis and monitoring of cancer treatment. Despite the expanding body of knowledge describing pharmacokinetic and pharmacodynamic interactions of antibodies in vivo, discrepancies remain over the effect of antigen expression level on tumoral uptake with some reports indicating a relationship between uptake and expression and others showing no correlation.

Procedures

Using a cell line with high epithelial cell adhesion molecule expression and moderate epidermal growth factor receptor expression, fluorescent antibodies with similar plasma clearance were imaged in vivo. A mathematical model and mouse xenograft experiments were used to describe the effect of antigen expression on uptake of these high-affinity antibodies.

Results

As predicted by the theoretical model, under subsaturating conditions, uptake of the antibodies in such tumors is similar because localization of both probes is limited by delivery from the vasculature. In a separate experiment, when the tumor is saturated, the uptake becomes dependent on the number of available binding sites. In addition, targeting of small micrometastases is shown to be higher than larger vascularized tumors.

Conclusions

These results are consistent with the prediction that high affinity antibody uptake is dependent on antigen expression levels for saturating doses and delivery for subsaturating doses. It is imperative for any probe to understand whether quantitative uptake is a measure of biomarker expression or transport to the region of interest. The data provide support for a predictive theoretical model of antibody uptake, enabling it to be used as a starting point for the design of more efficacious therapies and timely quantitative imaging probes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

EGFR:

Epidermal Growth Factor Receptor

EpCAM:

Epithelial Cell Adhesion Molecule

VT680:

VivoTag 680 fluorescent dye

AF750:

AlexaFluor 750 fluorescent dye

References

  1. Li WP, Meyer LA, Capretto DA, Sherman CD, Anderson CJ (2008) Receptor-binding, biodistribution, and metabolism studies of Cu-64-DOTA-cetuximab, a PET-imaging agent for epidermal growth-factor receptor-positive tumors. Cancer Biother Radiopharm 23:158–171

    Article  Google Scholar 

  2. Zhao BS, Schwartz LH, Larson SM (2009) Imaging surrogates of tumor response to therapy: anatomic and functional biomarkers. J Nucl Med 50:239–249

    Article  PubMed  Google Scholar 

  3. McLarty K, Cornelissen B, Cai ZL, Scollard DA, Costantini DL, Done SJ, Reilly RM (2009) Micro-SPECT/CT with In-111-DTPA-pertuzumab sensitively detects trastuzumab-mediated HER2 downregulation and tumor response in athymic mice bearing MDA-MB-361 human breast cancer xenografts. J Nucl Med 50:1340–1348

    Article  PubMed  CAS  Google Scholar 

  4. Zhang YJ, Xiang LM, Hassan R, Pastan I (2007) Immunotoxin and Taxol synergy results from a decrease in shed mesothelin levels in the extracellular space of tumors. Proc Natl Acad Sci USA 104:17099–17104

    Article  PubMed  CAS  Google Scholar 

  5. Wu AM, Senter PD (2005) Arming antibodies: prospects and challenges for immunoconjugates. Nat Biotechnol 23:1137–1146

    Article  PubMed  CAS  Google Scholar 

  6. Sharkey RM, Karacay H, Cardillo TM, Chang CH, McBride WJ, Rossi EA, Horak ID, Goldenberg DM (2005) Improving the delivery of radionuclides for imaging and therapy of cancer using pretargeting methods. Clin Cancer Res 11:7109S–7121S

    Article  PubMed  CAS  Google Scholar 

  7. Mattes MJ, Sharkey RM, Karacay H, Czuczman MS, Goldenberg DM (2008) Therapy of advanced B-lymphoma xenografts with a combination of Y-90-anti-CD22 IgG (Epratuzumab) and unlabeled Anti-CD20 IgG (Veltuzumab). Clin Cancer Res 14:6154–6160

    Article  PubMed  CAS  Google Scholar 

  8. Thurber G, Figueiredo J, Weissleder R (2009) Multicolor fluorescent intravital live microscopy (FILM) for surgical tumor resection in a mouse xenograft model. Plos One 4:e8053

    Article  PubMed  Google Scholar 

  9. Zou P, Xu SB, Povoski SP, Wang A, Johnson MA, Martin EW, Subramaniam V, Xu R, Sun DX (2009) Near-infrared fluorescence labeled anti-TAG-72 monoclonal antibodies for tumor imaging in colorectal cancer xenograft mice. Mol Pharm 6:428–440

    Article  PubMed  CAS  Google Scholar 

  10. Urano Y, Asanuma D, Hama Y, Koyama Y, Barrett T, Kamiya M, Nagano T, Watanabe T, Hasegawa A, Choyke PL et al (2009) Selective molecular imaging of viable cancer cells with pH-activatable fluorescence probes. Nat Med 15:104–109

    Article  PubMed  CAS  Google Scholar 

  11. Rosenthal EL, Kulbersh BD, King T, Chaudhuri TR, Zinn KR (2007) Use of fluorescent labeled anti-epidermal growth factor receptor antibody to image head and neck squamous cell carcinoma xenografts. Mol Cancer Ther 6:1230–1238

    Article  PubMed  CAS  Google Scholar 

  12. Jayson GC, Zweit J, Jackson A, Mulatero C, Julyan P, Ranson M, Broughton L, Wagstaff J, Hakannson L, Groenewegen G et al (2002) Molecular imaging and biological evaluation of HuMV833 anti-VEGF antibody: Implications for trial design of antiangiogenic antibodies. J Natl Cancer Inst 94:1484–1493

    PubMed  CAS  Google Scholar 

  13. Stollman TH, Scheer MGW, Franssen GM, Verrijp KN, Oyen WJG, Ruers TJM, Leenders WPJ, Boerman OC (2009) Tumor Accumulation of radiolabeled bevacizumab due to targeting of cell- and matrix-associated VEGF-A isoforms. Cancer Biother Radiopharm 24:195–200

    Article  PubMed  CAS  Google Scholar 

  14. Wu AM, Olafsen T (2008) Antibodies for molecular imaging of cancer. Cancer J 14:191–197

    Article  PubMed  CAS  Google Scholar 

  15. Smith-Jones PM, Solit D, Afroze F, Rosen N, Larson SM (2006) Early tumor response to Hsp90 therapy using HER2 PET: comparison with F-18-FDG PET. J Nucl Med 47:793–796

    PubMed  CAS  Google Scholar 

  16. Cai WB, Chen K, He LN, Cao QH, Koong A, Chen XY (2007) Quantitative PET of EGFR expression in xenograft-bearing mice using Cu-64-labeled cetuximab, a chimeric anti-EGFR monoclonal antibody. Eur J Nucl Med Mol Imaging 34:850–858

    Article  PubMed  CAS  Google Scholar 

  17. McLarty K, Cornelissen B, Scollard DA, Done SJ, Chun K, Reilly RM (2009) Associations between the uptake of In-111-DTPA-trastuzumab, HER2 density and response to trastuzumab (Herceptin) in athymic mice bearing subcutaneous human tumour xenografts. Eur J Nucl Med Mol Imaging 36:81–93

    Article  PubMed  CAS  Google Scholar 

  18. Aerts H, Dubois L, Perk L, Vermaelen P, van Dongen G, Wouters BG, Lambin P (2009) Disparity between In vivo EGFR expression and Zr-89-labeled cetuximab uptake assessed with PET. J Nucl Med 50:123–131

    Article  PubMed  CAS  Google Scholar 

  19. Milenic DE, Wong KJ, Baidoo KE, Ray GL, Garmestani K, Williams M, Brechbiel MW (2008) Cetuximab: preclinical evaluation of a monoclonal antibody targeting EGFR for radioimmunodiagnostic and radioimmunotherapeutic applications. Cancer Biother Radiopharm 23:619–631

    Article  PubMed  CAS  Google Scholar 

  20. Niu G, Li Z, Xie J, Le Q-T, Chen X (2009) PET of EGFR antibody distribution in head and neck squamous cell carcinoma models. J Nucl Med 50:1116–1123

    Article  PubMed  CAS  Google Scholar 

  21. Thurber G, Schmidt M, Wittrup KD (2008) Factors determining antibody distribution in tumors. Trends Pharmacol Sci 29:57–61

    PubMed  CAS  Google Scholar 

  22. Thurber GM, Schmidt MM, Wittrup KD (2008) Antibody tumor penetration: transport opposed by systemic and antigen-mediated clearance. Adv Drug Deliv Rev 60:1421–1434

    Article  PubMed  CAS  Google Scholar 

  23. Thurber GM, Wittrup KD (2008) Quantitative spatiotemporal analysis of antibody fragment diffusion and endocytic consumption in tumor spheroids. Cancer Res 68:3334–3341

    Article  PubMed  CAS  Google Scholar 

  24. Thurber GM, Zajic SC, Wittrup KD (2007) Theoretic criteria for antibody penetration into solid tumors and micrometastases. J Nucl Med 48:995–999

    Article  PubMed  CAS  Google Scholar 

  25. Schmidt MM, Wittrup KD (2009) A modeling analysis of the effects of molecular size and binding affinity on tumor targeting. Mol Cancer Ther 8:2861

    Article  PubMed  CAS  Google Scholar 

  26. Mager DE (2006) Target-mediated drug disposition and dynamics. Biochem Pharmacol 72:1–10

    Article  PubMed  CAS  Google Scholar 

  27. Adams G, Schier R, McCall A, Simmons H, Horak E, Alpaugh K, Marks J, Weiner L (2001) High affinity restricts the localization and tumor penetration of single-chain Fv antibody molecules. Cancer Res 61:4750–4755

    PubMed  CAS  Google Scholar 

  28. Ackerman ME, Chalouni C, Schmidt MM, Raman VV, Ritter G, Old LJ, Mellman I, Wittrup KD (2008) A33 antigen displays persistent surface expression. Cancer Immunol Immunother 57:1017–1027

    Article  PubMed  CAS  Google Scholar 

  29. Noguchi Y, Wu J, Duncan R, Strohalm J, Ulbrich K, Akaike T, Maeda H (1998) Early phase tumor accumulation of macromolecules: a great difference in clearance rate between tumor and normal tissues. Jpn J Cancer Res 89:307–314

    PubMed  CAS  Google Scholar 

  30. Sharkey RM, Natale A, Goldenberg DM, Mattes MJ (1991) Rapid blood clearance of immunoglobulin-G2A and immunoglobulin-G2B in nude-mice. Cancer Res 51:3102–3107

    PubMed  CAS  Google Scholar 

  31. Lonsmann H (1974) Interstitial fluid concentrations of albumin and immunoglobulin-G in normal men. Scand J Clin Lab Invest 34:119–122

    Article  Google Scholar 

  32. Wiig H, Gyenge CC, Tenstad O (2005) The interstitial distribution of macromolecules in rat tumours is influenced by the negatively charged matrix components. J Physiol-London 567:557–567

    Article  PubMed  CAS  Google Scholar 

  33. Weis SM, Cheresh DA (2005) Pathophysiological consequences of VEGF-induced vascular permeability. Nature 437:497–504

    Article  PubMed  CAS  Google Scholar 

  34. Yuan F, Chen Y, Dellian M, Safabakhsh N, Ferrara N, Jain RK (1996) Time-dependent vascular regression and permeability changes in established human tumor xenografts induced by an anti-vascular endothelial growth factor vascular permeability factor antibody. Proc Natl Acad Sci USA 93:14765–14770

    Article  PubMed  CAS  Google Scholar 

  35. Maxwell JL, Terracio L, Borg TK, Baynes JW, Thorpe SR (1990) A fluorescent residualizing label for studies on protein-uptake and catabolism in vivo and in vitro. Biochem J 267:155–162

    PubMed  CAS  Google Scholar 

  36. Ferl GZ, Kenanova V, Wu AM, DiStefano JJ (2006) A two-tiered physiologically based model for dually labeled single-chain Fv-Fc antibody fragments. Mol Cancer Ther 5:1550–1558

    Article  PubMed  CAS  Google Scholar 

  37. Sung C, Youle RJ, Dedrick RL (1990) Pharmacokinetic analysis of immunotoxin uptake in solid tumors—role of plasma kinetics, capillary-permeability, and binding. Cancer Res 50:7382–7392

    PubMed  CAS  Google Scholar 

  38. Ahlstrom H, Christofferson R, Lorelius L (1988) Vascularization of the continuous human colonic cancer cell line LS 174 T deposited subcutaneously in nude rats. APMIS 96:701–710

    Article  PubMed  CAS  Google Scholar 

  39. Flynn A, Boxer G, Begent R, Pedley R (2001) Relationship between tumour morphology, antigen and antibody distribution measured by fusion of digital phosphor and photographic images. Cancer Immunol Immunother 50:77–81

    Article  PubMed  CAS  Google Scholar 

  40. Baxter L, Jain RK (1989) Transport of fluid and macromolecules in tumors: 1. Role of interstitial pressure and convection. Microvasc Res 37:77–104

    Article  PubMed  CAS  Google Scholar 

  41. Tang Y, Lou J, Alpaugh RK, Robinson MK, Marks JD, Weiner LM (2007) Regulation of antibody-dependent cellular cytotoxicity by IgG intrinsic and apparent affinity for target antigen. J Immunol 179:2815–2823

    PubMed  CAS  Google Scholar 

  42. Hilmas D, Gillette E (1974) Morphometric analyses of the microvasculature of tumors during growth and after X-irradiation. Cancer 33:103–110

    Article  PubMed  CAS  Google Scholar 

  43. Hoskins WJ, McGuire WP, Brady MF, Homesley HD, Creasman WT, Berman M, Ball H, Berek JS (1994) The effect of diameter of largest residual disease on survival after primary cytoreductive surgery in patients with suboptimal residual epithelial ovarian carcinoma. Am J Obstet Gynecol 170(4):974–980, Mosby-Year Book Inc

    PubMed  CAS  Google Scholar 

  44. Smith-Jones PM, Solit DB, Akhurst T, Afroze F, Rosen N, Larson SM (2004) Imaging the pharmacodynamics of HER2 degradation in response to Hsp90 inhibitors. Nat Biotechnol 22:701–706

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants P50 CA86355, U24 CA092782, and T32 CA079443.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph Weissleder.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 7024 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thurber, G.M., Weissleder, R. Quantitating Antibody Uptake In Vivo: Conditional Dependence on Antigen Expression Levels. Mol Imaging Biol 13, 623–632 (2011). https://doi.org/10.1007/s11307-010-0397-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-010-0397-7

Key words

Navigation