Skip to main content
Log in

Shortening the Duration of [18F]FDG PET Brain Examination for Diagnosis of Brain Glioma

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Some patients cannot remain immobile for a long duration of 60 min, which is generally applied in the case of a 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG) dynamic positron emission tomography (PET) scan. We investigated the change of the parametric values when the time duration of PET data was shortened.

Procedures

Eight normal subjects and four subjects with brain glioma were studied. The rate values of K 1, k 2, k 3, and K i parametric images were computed by changing the time duration from 20 to 60 min, and changes of those parametric values were compared.

Results

The change was 20–30% and 3–5% for k 3 and K i, respectively, when the scan time was shortened from 60 to 40 min. The ratios of normal and disease regions in k 3 and K i values were similar, and contrasts of those images were not changed when the scan time was shortened to 40 min.

Conclusions

These results demonstrate that the short time duration of [18F]FDG PET examination can provide an acceptable estimation of parametric k 3 and K i images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Wong TZ, Westhuizen GJ, Coleman RE (2002) Positron emission tomography imaging of brain tumor. Neuroimag Clin N Am 12:615–626

    Article  Google Scholar 

  2. Spence AM, Muzi M, Mankoff DA, O’Sullivan SF, Link JM, Lewellen TK et al (2004) 18F-FDG PET of gliomas at delayed intervals: improved distinction between tumor and normal gray matter. J Nucl Med 45:1653–1659

    PubMed  Google Scholar 

  3. Kimura N, Yamamoto Y, Kameyama R, Hatakeyama T, Kawai N, Nishiyama Y (2009) Diagnostic value of kinetic analysis using dynamic 18F-FDG-PET in patients with malignant primary brain tumor. Nucl Med Commun 30:602–609

    Article  PubMed  Google Scholar 

  4. Di Chiro G, DeLaPaz RL, Brooks RA, Sokoloff L, Kornblith PL, Smith BH et al (1982) Glucose utilization of cerebral gliomas measured by 18F fluorodeoxyglucose and positron emission tomography. Neurology 32:1323–1329

    PubMed  Google Scholar 

  5. Ishikawa M, Kikuchi H, Nishizawa S, Yonekura Y (1990) Evaluation of glucose transport in malignant glioma by PET. Acta Neurochir Suppl (Wien) 51:165–167

    CAS  Google Scholar 

  6. Herholz K, Rudolf J, Heiss WD (1992) FDG transport and phosphorylation in human gliomas measured with dynamic PET. J Neurooncol 12:159–165

    Article  PubMed  CAS  Google Scholar 

  7. Delbeke D, Meyerrowitz C, Lapidus RL, Maciunas RJ, Jennings MT, Moots PL et al (1995) Optimal cutoff levels of F-18 fluorodeoxyglucose uptake in the differentiation of low-grade from high-grade brain tumors with PET. Radiology 195:47–52

    PubMed  CAS  Google Scholar 

  8. Alavi JB, Alavi A, Chawluk J, Kushner M, Powe J, Hickey W et al (1988) PET in patients with glioma. A predictor of prognosis. Cancer 62:1074–1078

    Article  PubMed  CAS  Google Scholar 

  9. Kaschten B, Stevenaert A, Sadzot B, Deprez M, Degueldre C, Fiore GD et al (1998) Preoperative evaluation of 54 gliomas by PET with fluorine-18-fluorodeoxyglucose and/or carbon-11-methionine. J Nucl Med 39:778–785

    PubMed  CAS  Google Scholar 

  10. Sasaki M, Kuwabara Y, Yoshida T, Nakagawa M, Fukumura T, Mihara F et al (1998) A comparative study of thallium-201 SPET, carbon-11 methionine PET and fluorine-18 fluorodeoxyglucose PET for the differentiation of astrocytic tumours. Eur J Nucl Med 25:1261–1269

    Article  PubMed  CAS  Google Scholar 

  11. Kosaka N, Tsuchida T, Uematsu H, Kimura H, Okazawa H, Itoh H (2008) 18F-FDG PET of common enhancing malignant brain tumors. AJR Am J Roentgenol 190:W365–W369

    Article  PubMed  Google Scholar 

  12. Gjedde A, Diemer NH (1983) Autoradiographic determination of regional brain glucose content. J Cereb Blood Flow Metab 3:303–310

    Article  PubMed  CAS  Google Scholar 

  13. Nishiyama Y, Yamamoto Y, Monden T, Sasakawa Y, Kawai N, Satoh K et al (2007) Diagnostic value of kinetic analysis using dynamic FDG PET in immunocompetent patients with primary CNS lymphoma. Eur J Nucl Med Mol Imaging 34:78–86

    Article  PubMed  Google Scholar 

  14. Blomqvist G (1984) On the construction of functional maps in positron emission tomography. J Cereb Blood Flow Metab 4:629–632

    Article  PubMed  CAS  Google Scholar 

  15. Lawson CL, Hanson RJ (1974) Solving least squares problems. Prentice-Hall, New Jersey

    Google Scholar 

  16. Torizuka T, Nobezawa S, Momiki S, Kasamatsu N, Kanno T, Yoshikawa E et al (2000) Short dynamic FDG-PET imaging protocol for patients with lung cancer. Eur J Nucl Med 27:1538–1542

    Article  PubMed  CAS  Google Scholar 

  17. Ishikawa M, Kikuchi H, Nagata I (1990) Glucose consumption and rate constants for 18F-fluorodeoxyglucose in human gliomas. Neurol Med Chir 30:377–381

    Article  CAS  Google Scholar 

  18. Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M (1977) The [14C] deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28:897–916

    Article  PubMed  CAS  Google Scholar 

  19. Phelps ME, Huang SC, Hoffman EJ, Selin C, Sokoloff L, Kuhl DE (1979) Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose: validation of method. Ann Neurol 6:371–388

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank Dr. Vesa Oikonen in Turku PET Centre in Finland for the instructions and help in using the software for data computation in the present study.

Conflicts of interest

The authors declare to have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihide Monden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monden, T., Kudomi, N., Sasakawa, Y. et al. Shortening the Duration of [18F]FDG PET Brain Examination for Diagnosis of Brain Glioma. Mol Imaging Biol 13, 754–758 (2011). https://doi.org/10.1007/s11307-010-0384-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-010-0384-z

Key words

Navigation