Skip to main content

Advertisement

Log in

Comparison of Different SUV-Based Methods for Response Prediction to Neoadjuvant Radiochemotherapy in Locally Advanced Rectal Cancer by FDG-PET and MRI

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to compare different analysis methods of 2-deoxy-2-[18F]fluoro-d-glucose positron emission tomography (FDG-PET) and magnetic resonance imaging (MRI) data for prediction of histopathological response (HPR) to neoadjuvant radiochemotherapy (RCTx) in patients with advanced rectal cancer.

Procedures

Twenty-eight patients of a previously published clinical trial underwent serial FDG-PET/computed tomography scans at baseline, 14 days after initiation, and after completion of RCTx. In addition, MRI was performed at baseline and after the end of therapy. Response prediction was correlated with different image analysis algorithms comprising pure metabolic parameters taking into account the FDG uptake, volume-based parameters measuring the lesion volume in either MRI or PET data, and integrated parameters combining metabolic and volumetric information. The established two-dimensional (2D) regions of interest (ROI; diameter 1.5 cm) served as standard of reference. Changes between the parameters at the defined time points were calculated and analyzed for their potential to predict HPR to RCTx using receiver operating characteristic (ROC) analysis. Additionally, the interobserver reliability of fixed-size algorithms was analyzed.

Results

Histopathology classified eight of 28 patients as non-responders and 20 patients as responders to RCTx. ROC analysis of the standard 2D ROI technique revealed areas under the curve (AUCs) of 0.64 and 0.71 for the early and late time points. Corresponding AUCs for three-dimensional (3D) volume of interest technique resulted in AUCs of 0.75 for both early and late time points, respectively. Volumetric parameters showed AUCs ranging from 0.52 to 0.57 (early time points) and 0.46 to 0.76 (later time points), respectively. Corresponding AUCs for the integrated parameters were ranging between 0.70 and 0.73 (early time points) and 0.66 and 0.76 (late time points). Analysis of intra-class correlation coefficients (ICC) for three different readers resulted in the best intra-class correlation values for the changes of 3D standard uptake value (SUV3D), for both early (ICC = 0.96) and late (ICC = 0.96) time points, respectively.

Conclusions

Our study emphasizes that 3D-based approaches for assessing SUV values consistently belonged to the group of parameters with the highest AUC values for prediction of HPR to neoadjuvant RCTx in patients with rectal cancer. MRI was not a good predictor for therapy response; hence, the MRI information derived from combined anatomic and metabolic parameters showed unsatisfying results too.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Souvatzoglou M, Ziegler SI, Martinez MJ et al (2007) Standardised uptake values from PET/CT images: comparison with conventional attenuation-corrected PET. Eur J Nucl Med Mol Imaging 34(3):405–412

    Article  PubMed  CAS  Google Scholar 

  2. Stahl A, Ott K, Schwaiger M, Weber WA (2004) Comparison of different SUV-based methods for monitoring cytotoxic therapy with FDG PET. Eur J Nucl Med Mol Imaging 31(11):1471–1478

    Article  PubMed  CAS  Google Scholar 

  3. Weber WA, Figlin R (2007) Monitoring cancer treatment with PET/CT: does it make a difference? J Nucl Med 48(Suppl 1):36S–44S

    PubMed  CAS  Google Scholar 

  4. Weber WA, Wieder H (2006) Monitoring chemotherapy and radiotherapy of solid tumors. Eur J Nucl Med Mol Imaging 33(Suppl 1):27–37

    Article  PubMed  Google Scholar 

  5. Weber WA, Ziegler SI, Thodtmann R, Hanauske AR, Schwaiger M (1999) Reproducibility of metabolic measurements in malignant tumors using FDG PET. J Nucl Med 40(11):1771–1777

    PubMed  CAS  Google Scholar 

  6. Ott K, Herrmann K, Lordick F et al (2008) Early metabolic response evaluation by fluorine-18 fluorodeoxyglucose positron emission tomography allows in vivo testing of chemosensitivity in gastric cancer: long-term results of a prospective study. Clin Cancer Res 14(7):2012–2018

    Article  PubMed  CAS  Google Scholar 

  7. Ott K, Weber WA, Lordick F et al (2006) Metabolic imaging predicts response, survival, and recurrence in adenocarcinomas of the esophagogastric junction. J Clin Oncol 24(29):4692–4698

    Article  PubMed  Google Scholar 

  8. Weber WA, Ott K, Becker K et al (2001) Prediction of response to preoperative chemotherapy in adenocarcinomas of the esophagogastric junction by metabolic imaging. J Clin Oncol 19(12):3058–3065

    PubMed  CAS  Google Scholar 

  9. Lammertsma AA, Hoekstra CJ, Giaccone G, Hoekstra OS (2006) How should we analyse FDG PET studies for monitoring tumour response? Eur J Nucl Med Mol Imaging 33(Suppl 1):16–21

    Article  PubMed  Google Scholar 

  10. Lordick F, Ruers T, Aust DE et al (2008) European organisation of research and treatment of cancer (EORTC) gastrointestinal group: workshop on the role of metabolic imaging in the neoadjuvant treatment of gastrointestinal cancer. Eur J Cancer 44(13):1807–1819

    Article  PubMed  Google Scholar 

  11. Shankar LK, Hoffman JM, Bacharach S et al (2006) Consensus recommendations for the use of 18F-FDG PET as an indicator of therapeutic response in patients in national cancer institute trials. J Nucl Med 47(6):1059–1066

    PubMed  CAS  Google Scholar 

  12. Minn H, Zasadny KR, Quint LE, Wahl RL (1995) Lung cancer: reproducibility of quantitative measurements for evaluating 2-[F-18]-fluoro-2-deoxy-D-glucose uptake at PET. Radiology 196(1):167–173

    PubMed  CAS  Google Scholar 

  13. Shankar LK, Sullivan DC (2007) PET/CT in cancer patient management. Commentary. J Nucl Med 48(Suppl 1):1S

    PubMed  Google Scholar 

  14. Avril N, Rose CA, Schelling M et al (2000) Breast imaging with positron emission tomography and fluorine-18 fluorodeoxyglucose: use and limitations. J Clin Oncol 18(20):3495–3502

    PubMed  CAS  Google Scholar 

  15. Ott K, Sendler A, Becker K et al (2003) Neoadjuvant chemotherapy with cisplatin, 5-FU, and leucovorin (PLF) in locally advanced gastric cancer: a prospective phase II study. Gastric Cancer 6(3):159–167

    Article  PubMed  CAS  Google Scholar 

  16. Schelling M, Avril N, Nahrig J et al (2000) Positron emission tomography using [(18)F]fluorodeoxyglucose for monitoring primary chemotherapy in breast cancer. J Clin Oncol 18(8):1689–1695

    PubMed  CAS  Google Scholar 

  17. Weber WA, Petersen V, Schmidt B et al (2003) Positron emission tomography in non-small-cell lung cancer: prediction of response to chemotherapy by quantitative assessment of glucose use. J Clin Oncol 21(14):2651–2657

    Article  PubMed  CAS  Google Scholar 

  18. Wieder HA, Brucher BL, Zimmermann F et al (2004) Time course of tumor metabolic activity during chemoradiotherapy of esophageal squamous cell carcinoma and response to treatment. J Clin Oncol 22(5):900–908

    Article  PubMed  CAS  Google Scholar 

  19. Larson SM, Erdi Y, Akhurst T et al (1999) Tumor treatment response based on visual and quantitative changes in global tumor glycolysis using PET-FDG imaging. The visual response score and the change in total lesion glycolysis. Clin Positron Imaging 2(3):159–171

    Article  PubMed  Google Scholar 

  20. Rosenberg R, Herrmann K, Gertler R et al (2009) The predictive value of metabolic response to preoperative radiochemotherapy in locally advanced rectal cancer measured by PET/CT. Int J Colorectal Dis 24(2):191–200

    Article  PubMed  Google Scholar 

  21. Becker K, Mueller JD, Schulmacher C et al (2003) Histomorphology and grading of regression in gastric carcinoma treated with neoadjuvant chemotherapy. Cancer 98(7):1521–1530

    Article  PubMed  Google Scholar 

  22. Martinez MJ, Bercier Y, Schwaiger M, Ziegler SI (2006) PET/CT Biograph Sensation 16. Performance improvement using faster electronics. Nuklearmedizin 45(3):126–133

    PubMed  Google Scholar 

  23. Ott K, Fink U, Becker K et al (2003) Prediction of response to preoperative chemotherapy in gastric carcinoma by metabolic imaging: results of a prospective trial. J Clin Oncol 21(24):4604–4610

    Article  PubMed  CAS  Google Scholar 

  24. Ott K, Vogelsang H, Marton N et al (2006) The thymidylate synthase tandem repeat promoter polymorphism: a predictor for tumor-related survival in neoadjuvant treated locally advanced gastric cancer. Int J Cancer 119(12):2885–2894

    Article  PubMed  CAS  Google Scholar 

  25. Weber WA (2006) Positron emission tomography as an imaging biomarker. J Clin Oncol 24(20):3282–3292

    Article  PubMed  CAS  Google Scholar 

  26. Bosset JF, Collette L, Calais G et al (2006) Chemotherapy with preoperative radiotherapy in rectal cancer. N Engl J Med 355(11):1114–1123

    Article  PubMed  CAS  Google Scholar 

  27. Kapiteijn E, Marijnen CA, Nagtegaal ID et al (2001) Preoperative radiotherapy combined with total mesorectal excision for resectable rectal cancer. N Engl J Med 345(9):638–646

    Article  PubMed  CAS  Google Scholar 

  28. Sauer R, Becker H, Hohenberger W et al (2004) Preoperative versus postoperative chemoradiotherapy for rectal cancer. N Engl J Med 351(17):1731–1740

    Article  PubMed  CAS  Google Scholar 

  29. Calvo FA, Domper M, Matute R et al (2004) 18F-FDG positron emission tomography staging and restaging in rectal cancer treated with preoperative chemoradiation. Int J Radiat Oncol Biol Phys 58(2):528–535

    Article  PubMed  Google Scholar 

  30. Cascini GL, Avallone A, Delrio P et al (2006) 18F-FDG PET is an early predictor of pathologic tumor response to preoperative radiochemotherapy in locally advanced rectal cancer. J Nucl Med 47(8):1241–1248

    PubMed  CAS  Google Scholar 

  31. de Geus-Oei LF, van Laarhoven HW, Visser EP et al (2008) Chemotherapy response evaluation with FDG-PET in patients with colorectal cancer. Ann Oncol 19(2):348–352

    Article  PubMed  Google Scholar 

  32. Findlay M, Young H, Cunningham D et al (1996) Noninvasive monitoring of tumor metabolism using fluorodeoxyglucose and positron emission tomography in colorectal cancer liver metastases: correlation with tumor response to fluorouracil. J Clin Oncol 14(3):700–708

    PubMed  CAS  Google Scholar 

  33. Funaioli C, Pinto C, Di Fabio F et al (2007) 18FDG-PET evaluation correlates better than CT with pathological response in a metastatic colon cancer patient treated with bevacizumab-based therapy. Tumori 93(6):611–615

    PubMed  Google Scholar 

  34. Guillem JG, Moore HG, Akhurst T et al (2004) Sequential preoperative fluorodeoxyglucose-positron emission tomography assessment of response to preoperative chemoradiation: a means for determining longterm outcomes of rectal cancer. J Am Coll Surg 199(1):1–7

    Article  PubMed  Google Scholar 

  35. Boellaard R, Krak NC, Hoekstra OS, Lammertsma AA (2004) Effects of noise, image resolution, and ROI definition on the accuracy of standard uptake values: a simulation study. J Nucl Med 45(9):1519–1527

    PubMed  Google Scholar 

  36. Krak NC, Boellaard R, Hoekstra OS, Twisk JW, Hoekstra CJ, Lammertsma AA (2005) Effects of ROI definition and reconstruction method on quantitative outcome and applicability in a response monitoring trial. Eur J Nucl Med Mol Imaging 32(3):294–301

    Article  PubMed  Google Scholar 

  37. Benz MR, Allen-Auerbach MS, Eilber FC et al (2008) Combined assessment of metabolic and volumetric changes for assessment of tumor response in patients with soft-tissue sarcomas. J Nucl Med 49(10):1579–1584

    Article  PubMed  Google Scholar 

  38. Benz MR, Evilevitch V, Allen-Auerbach MS et al (2008) Treatment monitoring by 18F-FDG PET/CT in patients with sarcomas: interobserver variability of quantitative parameters in treatment-induced changes in histopathologically responding and nonresponding tumors. J Nucl Med 49(7):1038–1046

    Article  PubMed  Google Scholar 

  39. Roedl JB, Halpern EF, Colen RR, Sahani DV, Fischman AJ, Blake MA (2009) Metabolic tumor width parameters as determined on PET/CT predict disease-free survival and treatment response in squamous cell carcinoma of the esophagus. Mol Imaging Biol 11(1):54–60

    Article  PubMed  Google Scholar 

  40. Wieder HA, Beer AJ, Lordick F et al (2005) Comparison of changes in tumor metabolic activity and tumor size during chemotherapy of adenocarcinomas of the esophagogastric junction. J Nucl Med 46(12):2029–2034

    PubMed  CAS  Google Scholar 

  41. Denecke T, Rau B, Hoffmann KT et al (2005) Comparison of CT, MRI and FDG-PET in response prediction of patients with locally advanced rectal cancer after multimodal preoperative therapy: is there a benefit in using functional imaging? Eur Radiol 15(8):1658–1666

    Article  PubMed  CAS  Google Scholar 

  42. Kim NK, Baik SH, Min BS et al (2007) A comparative study of volumetric analysis, histopathologic downstaging, and tumor regression grade in evaluating tumor response in locally advanced rectal cancer following preoperative chemoradiation. Int J Radiat Oncol Biol Phys 67(1):204–210

    Article  PubMed  Google Scholar 

  43. Beets-Tan RG, Beets GL (2004) Rectal cancer: review with emphasis on MR imaging. Radiology 232(2):335–346

    Article  PubMed  Google Scholar 

  44. Wallengren NO, Holtas S, Andren-Sandberg A, Jonsson E, Kristoffersson DT, McGill S (2000) Rectal carcinoma: double-contrast MR imaging for preoperative staging. Radiology 215(1):108–114

    PubMed  CAS  Google Scholar 

  45. Kuo LJ, Chern MC, Tsou MH et al (2005) Interpretation of magnetic resonance imaging for locally advanced rectal carcinoma after preoperative chemoradiation therapy. Dis Colon Rectum 48(1):23–28

    Article  PubMed  Google Scholar 

  46. Suppiah A, Hunter IA, Cowley J et al (2009) Magnetic resonance imaging accuracy in assessing tumour down-staging following chemoradiation in rectal cancer. Colorectal Dis 11(3):249–253

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We appreciate the excellent contributions made by our colleagues Petra Watzlowik, Karin Kantke, and Michael Herz and the great support of our technical staff members Brigitte Dzewas and Coletta Kruschke.

Conflict of interest

The authors declare that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Herrmann.

Additional information

Significance:

The methodology to measure therapy response using PET/CT data is highly significant for the application of FDG-PET/CT in oncology.

Ken Herrmann and Ralph A. Bundschuh contributed equally to the manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herrmann, K., Bundschuh, R.A., Rosenberg, R. et al. Comparison of Different SUV-Based Methods for Response Prediction to Neoadjuvant Radiochemotherapy in Locally Advanced Rectal Cancer by FDG-PET and MRI. Mol Imaging Biol 13, 1011–1019 (2011). https://doi.org/10.1007/s11307-010-0383-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-010-0383-0

Key words

Navigation