Skip to main content
Log in

Uptake Decrease of Proliferative PET Tracer 18FLT in Bone Marrow after Carbon Ion Therapy in Lung Cancer

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to investigate the change of 3′-[18F]fluoro-3′-deoxy-l-thymidine (18FLT) uptake in normal bone marrow (BM) after inevitable radiation.

Procedures

Twenty-one non-small cell lung cancer patients who received carbon ion radiotherapy (CIRT) were studied with 18FLT-positron emission tomography/computed tomography (PET/CT) at pre- and post-CIRT. Radiation dose was calculated by radiation planning. Irradiated BM was divided into three groups (<10% of maximum dose, 10–30%, and >30%).

Results

18FLT uptake clearly decreased at >10% irradiated areas and mildly decreased at <10% areas. 18FLT uptake was lowest just after CIRT, somewhat increased at 3 months, and remained unchanged for more than 1 year. There was no significant difference between 10–30% and >30% areas.

Conclusion

18FLT revealed that BM function decreased by small dose such as <4.2–4.4 GyE/1 fraction of CIRT and is eradicated by >4.2–4.4 GyE/1 fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Shields AF, Grierson JR, Dohmen BM et al (1998) Imaging proliferation in vivo with [F-18] FLT and positron emission tomography. Nat Med 4:1334–1336

    Article  PubMed  CAS  Google Scholar 

  2. Salskov A, Tammisetti VS, Grierson J et al (2007) FLT: measuring tumor cell proliferation in vivo with positron emission tomography and 3′-deoxy-3′-[18F]fluorothymidine. Sem Nucl Med 37:429–439

    Article  Google Scholar 

  3. Yamamoto Y, Nishiyama Y, Ishikawa S et al (2007) Correlation of (18)F-FLT and (18)F-FDG uptake on PET with Ki-67 immunohistochemistry in non-small cell lung cancer. Eur J Nucl Med Mol Imaging 34:1610–1616

    Article  PubMed  CAS  Google Scholar 

  4. Saga T, Kawashima H, Araki N et al (2006) Evaluation of primary brain tumors with FLT-PET: usefulness and limitations. Clin Nucl Med 31:774–780

    Article  PubMed  Google Scholar 

  5. Buck AK, Bommer M, Sulgenbauer S et al (2006) Molecular imaging of proliferation in malignant lymphoma. Cancer Res 66:11055–11061

    Article  PubMed  CAS  Google Scholar 

  6. Kenny LM, Vigushin DM, Al-Nahhas A et al (2005) Quantification of cellular proliferation in tumor and normal tissues of patients with breast cancer by [18F]fluorothymidine-positron emission tomography imaging: evaluation of analytical methods. Cancer Res 65:10104–10112

    Article  PubMed  CAS  Google Scholar 

  7. Francis DL, Visvikis D, Costa DC et al (2003) Potential impact of [18F]3-deoxy-3′-fluorothymidine versus [18F]fluoro-2-deoxy-D-glucose in positron emission tomography for colorectal cancer. Eur J Nucl Med Mol Imaging 30:988–994

    Article  PubMed  CAS  Google Scholar 

  8. van Westreenen HL, Cobben DC, Jager PL et al (2005) Comparison of 18FFLT PET and F-18 FDG PET in esophageal cancer. J Nucl Med 46:400–404

    PubMed  Google Scholar 

  9. Cobben DC, van der Laan BF, Maas B et al (2004) F-18 FLT PET for visualization of laryngeal cancer: comparison with F-18 FDG PET. J Nucl Med 45:226–231

    PubMed  Google Scholar 

  10. Hermann K, Ott K, Buck AK et al (2007) Imaging gastric cancer with PET and radiotracers F-18 FLT and F-18 FDG: a comparative analysis. J Nucl Med 48:1945–1950

    Article  Google Scholar 

  11. Toyohara J, Waki A, Takamatsu S et al (2002) Basis of FLT as a cell proliferation marker comparative uptake studies with [3H]thymidine and [3H]arabinothymidine, and cell-analysis in 22 asynchronously growing tumor cell lines. Nucl Med Biol 29:281–287

    Article  PubMed  Google Scholar 

  12. Agool A, Schot BW, Jager PL et al (2006) F-18 FLT PET in hemoatologic disorders: a novel technique to analyze the bone marrow compartment. J Nucl Med 47:1592–1598

    PubMed  Google Scholar 

  13. Miyamoto T, Yamamoto N, Nishimura H et al (2003) Carbon ion radiotherapy for stage I non-small cell lung cancer. Radiother Oncol 66:127–140

    Article  PubMed  Google Scholar 

  14. Miyamoto T, Baba M, Sugane T et al (2007) Carbon ion radiotherapy for stage I non-small cell lung cancer using a regimen of four fractions during 1 week. J Thorac Oncol 2:916–926

    Article  PubMed  Google Scholar 

  15. Kanai T, Matsufuji N, Miyamoto T et al (2006) Examination of GyE system for HIMAC carbon therapy. Int J Radiat Oncol Biol Phys 64:650–656

    Article  PubMed  Google Scholar 

  16. Martin SJ, Eisenbarth JA, Wagner-Utermann U et al (2002) A new precursor for the radiosynthesis of [18F]FLT. Nucl Med Biol 29:263–273

    Article  PubMed  CAS  Google Scholar 

  17. Nishimura H, Miyamoto T, Yamamoto N et al (2003) Radiographic pulmonary and pleural changes after carbon ion irradiation. Int J Radiat Oncol Biol Phys 55:861–866

    Article  PubMed  Google Scholar 

  18. Minohara S, Kanai T, Endo M et al (2000) Respiratory gated irradiation system for heavy-ion radiotherapy. Int J Radiat Oncol Biol Phys 47:1097–1103

    Article  PubMed  CAS  Google Scholar 

  19. Hall EJ, Giaccia AJ (2006) Radiobiology for the radiologist, 6th edn, Chapter 8. Accute effects of total-body irradiation. Lippincott Williams & Wilkins, Philadelphia, pp 117–128

    Google Scholar 

  20. Higashi T, Fisher SJ, Brown RS et al (2000) Evaluation of early effect of local irradiation on normal rodent bone marrow metabolism using FDG: preclinical PET studies. J Nucl Med 41:2026–2035

    PubMed  CAS  Google Scholar 

  21. Higashi K, Clavo AC, Wahl RL (1993) Does FDG uptake measure proliferative activity of human cancer cells? J Nucl Med 34:414–419

    PubMed  CAS  Google Scholar 

  22. Everitt S, Hicks R, Ball D et al (2009) Imaging cellular proliferation during chemo-radiotherapy: a pilot study of serial F-18 FLT positron emission tomography/computed tomography imaging for non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 75:1098–1104

    Article  PubMed  Google Scholar 

  23. Menda Y, Ponto LB, Dornfeld KJ et al (2009) Kinetic analysis of 3′-deoxy-3′-18F-fluorothymidine (18F-FLT) in head and neck cancer patients before and early after initiation of chemoradiation therapy. J Nucl Med 50:1028–1035

    Article  PubMed  CAS  Google Scholar 

  24. Wieder HA, Geinitz H, Rosenberg R et al (2007) PET imaging with [18F]3′-deoxy-3′-fluorothymidine for prediction of response to neoadjuvant treatment in patients with rectal cancer. Eur J Nucl Med Mol Imaging 34:878–883

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuru Koizumi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koizumi, M., Saga, T., Inubushi, M. et al. Uptake Decrease of Proliferative PET Tracer 18FLT in Bone Marrow after Carbon Ion Therapy in Lung Cancer. Mol Imaging Biol 13, 577–582 (2011). https://doi.org/10.1007/s11307-010-0363-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-010-0363-4

Key words

Navigation